\qquad

1. $(10 \mathrm{pts}) f=\{(1,-1),(2,4),(3,2),(4,4)\}$
a. Function? (Yes/no)
b. If not, why not?
c. What's the domain?
d. What's the range?
2. (10 pts) For each of the following graphs, determine if the relation is a function. If it is a function, state whether or not it is 1-to-1.

Is it a function?
Is it a function?
Is it a function?
If it is a function, is it 1-to-1?
If it is a function, is it 1-to-1? If it is a function, is it 1-to-1?
3. (10 pts) Let $f(x)=x^{2}+3$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
4. (5 pts) Determine whether or not $y^{2}-2 x=5$ defines y as a function of x. If it does not, show/explain why not. (Solve for y and look at how many solutions you get.)
5. Let $f(x)=\frac{x+5}{x-6}$ and $g(x)=\sqrt{x+8}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Find $(f \circ g)(x)$. (Do not simplify.)
d. (5 pts) What is the domain of $(f \circ g)(x)$?

Still working with $f(x)=\frac{x+5}{x-6}$ and $g(x)=\sqrt{x+8}$.
e. Determine each of the following functions (without simplifying) and state the domain of each in interval notation.
i. $\quad(5 \mathrm{pts})(f+g)(x)$
ii. (5 pts) $\left(\frac{f}{g}\right)(x)$
6. (5 pts) Answer one of the following:
a. Show that $f(x)=\frac{x+3}{x-1}$ is 1-to-1, algebraically.
b. Let $f(x)=\frac{x+3}{x-1}$. Find $f^{-1}(x)$.
7. (5 pts) The graph of f is given. Sketch the graph of f^{-1}.

8. (5 pts) If f varies jointly as x and w and inversely with the cube of r, write the equation describing this relationship.
9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.
a. (5 pts) $g(x)=2|x+5|+4$
\#9, continued... Graph using transformations.
b. (5 pts) $h(x)=2 \sqrt{9-3 x}$

Hint: $\quad 9-3 x=-3 x+9=-3(x-3)$
10. Solve the absolute value inequalities:
a. (5 pts) $|2 x-3|-1>5$
b. (5 pts) $|2 x-3|-1 \leq-5$

