MAT 121100 Points
Test 4, Chapter 4

Spring, 2011
Name \qquad

1. (20 pts) Starting with $f(x)=2^{x}$, sketch the graph of $g(x)=-4 \cdot 2^{x+1}+5$ in 4 steps (counting $f(x)=2^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Your final graph should also show the y-intercept and, for 5 bonus points, the x-intercept (See \#5b).

2. (10 pts) Find the inverse of the function $g(x)=-3^{1-x}+7$
3. (10 pts) Solve $\ln (x-4)+\ln (x+1)=\ln (6)$ for x.
4. (10 pts) Graph $h(x)=\log _{5}(-2 x-8)$. You can do it in 3 graphs (counting $f(x)=\log _{5}(x)$ as the first), if you combine the horizontal stretch/shrink with the horizontal reflection. If you do the stretch/shrink and the reflection separately, it will take 4 graphs. Use the same 3 key points that are used in class.
5. Solve for x to the precision specified:
a. (10 pts) $9^{2 x-3}=3^{-3 x+2}$. (Give an exact answer.)
b. (10 pts) $-4 \cdot 2^{x+1}+5=0$ (Solving this equation has a lot to do with the $1^{\text {st }}$ question. Give your answer to 4 decimal places.)
c. (10 pts) $5^{x-1}=3^{x}$ for x. Give an exact answer and then round your answer to 4 decimal places.
6. (10 pts) Radioactive Wieligminium- 12.5 has a half-life of 250 years. What's its decay rate? Write the function modeling the amount of radioactive Wieligminium- 12.5 remaining in a sample after t years. Hint: $A(t)=A_{0} e^{-k t}$.
7. (10 pts) Using your work from the previous problem (No double jeopardy - go with what you have (or make something up!)), a sample of radioactive Wieligminium decayed from 20 grams to 5 grams. How old is the sample?
