\qquad

1. (10 pts) Form a polynomial in factored form with real coefficients with the given zeros and degree. Please do not expand the polynomial.

Zeros: 2, multiplicity 2; - 3, multiplicity 2. Degree 4.
2. (5 pts) Expand $(x+(2-3 i))(x+(2+3 i))$
3. (5 pts) Use synthetic division to find $P(3)$ if $P(x)=2 x^{5}-3 x^{3}+3 x^{2}-4 x+13$.
4. (5 pts) Divide $f(x)=x^{4}-3 x^{3}+2 x^{2}+5$ by $d(x)=x^{2}-2$. Then write the result in the form Dividend $=$ Divisor \cdot Quotient + Remainder .
5. Let $f(x)=2 x^{5}-20 x^{4}+56 x^{3}+16 x^{2}-256 x+256$, and suppose its factored form is given by $f(x)=2(x-2)^{2}(x+2)(x-4)^{2}$
a. (5 pts) List each real zero and its multiplicity. Determine whether the graph of $f(x)$ touches or crosses the x-axis at each x-intercept.
b. (5 pts) What power function does f resemble for large values of $|x|$? In other words, give the end behavior for f, along with a simple diagram.
c. (5 pts) Use your work, above, to help you sketch the graph of $f(x)$, showing all intercepts (including the y-intercept).
6. Use your sketch from the previous problem to help you solve the following inequalities. You might want to re-sketch it, below, just to have it on the same page.
a. $(5$ pts $) 2(x-2)^{2}(x+2)(x-4)^{2} \leq 0$
b. $\left(5\right.$ pts) $\frac{2(x-2)^{2}}{(x+2)(x-4)^{2}} \leq 0$
7. (5 pts) Show that $x=5$ is an upper bound on real zeros for $f(x)=x^{4}-5 x^{3}+15 x^{2}-5 x-26$.
8. (10 pts) Find the real zeros of $f(x)=x^{4}-5 x^{3}+15 x^{2}-5 x-26$. Factor f over the set of real numbers. Use scratch paper (the back of page 5) to make your guesses, and then use the correct guesses to break f down in the space, below.
9. (5 pts) Find the remaining zeros of f and factor f over the set of complex numbers.
10. (10 pts) Suppose $R(x)=\frac{x^{3}-8 x^{2}+x+42}{x^{3}-x^{2}-10 x-8}$ can be factored into $\frac{(x-3)(x+2)(x-7)}{(x+2)(x-4)(x+1)}$.
(It can.) Sketch the graph of R showing all intercepts, asymptotes and holes (if any).

