MAT 121 - Spring, 2011
Chapter 2

Test 2
(5 pts) Name
\qquad

1. $(10 \mathrm{pts}) f=\{(1,-1),(2,4),(3,2),(4,5)\}$
a. Function? (Yes/no)
b. If not, why not?
c. If it is a function, is it 1-to-1? (Yes/no)
d. If it is not 1-to-1, why not?
e. What's the domain?
f. What's the range?
2. (10 pts) For each of the following graphs, determine if the relation is a function. If it is a function, state whether or not it is 1-to-1.

Is it a function?
Is it 1-to-1?

Is it a function?
Is it 1-to-1?

Is it a function?
Is it 1-to-1?
3. (5 pts) Determine whether or not $|x+3|-2 y=5$ defines y as a function of x. If it does not, show/explain why not. (Solve for y and look at how many solutions you get.)
4. (10 pts) Let $f(x)=x^{2}+3$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
5. Let $f(x)=\frac{x+2}{x+3}$ and $g(x)=\sqrt{x+5}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Find $(f \circ g)(x)$. (Do not simplify.)
d. (5 pts) What is the domain of $(f \circ g)(x)$?
e. Determine each of the following functions (without simplifying) and state the domain of each in interval notation.
i. $\quad(5 \mathrm{pts})(f+g)(x)$
ii. (5 pts) $\left(\frac{g}{f}\right)(x)$
6. (5 pts) Answer one of the following:
a. Show that $f(x)=\frac{x-1}{x+2}$ is 1-to-1, algebraically.
b. Let $f(x)=\frac{x-1}{x+2}$. Find $f^{-1}(x)$.
7. (5 pts) The graph of f is given. Sketch the graph of f^{-1}.

8. (5 pts) If f varies jointly as q^{2} and h, and $f=-36$ when $q=3$ and $h=2$, find f when $q=4$ and $h=2$.
9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.
a. $(5 \mathrm{pts}) h(x)=3(x+5)^{2}+1$
\#9, continued... Graph using transformations.
b. (5 pts) $g(x)=\sqrt{3-x}+5$ (Hint: $3-x=-x+3$ is one way. $3-x=-(x-3)$ is another.)
10. (5 pts) Find the inverse of $f(x)=3 x-7$

