
- 1. (10 pts) $f = \{(1,-1),(2,4),(3,2),(4,4)\}$
 - a. Function? (Yes/no)
 - b. If not, why not?
 - c. If it is a function, is it 1-to-1? (Yes/no)
 - d. If it is *not* 1-to-1, why not?
 - e. What's the domain?
 - f. What's the range?
- 2. (10 pts) For each of the following graphs, determine if the relation is a function. If it is a function, state whether or not it is 1-to-1.

Is it a function?

Is it a function?

Is it a function?

If it is a function, is it 1-to-1?

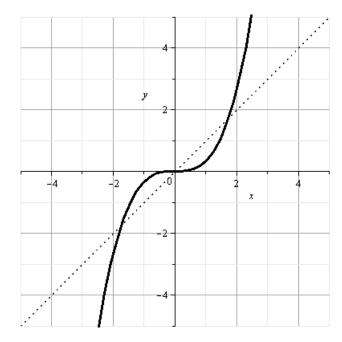
If it is a function, is it 1-to-1?

If it is a function, is it 1-to-1?

3. (5 pts) Determine whether or not |y+3|-2x=5 defines y as a function of x. If it does not, show/explain why not. (Solve for y and look at how many solutions you get.)

4. (10 pts) Let $f(x) = x^2 + 3$. Simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$.

- 5. Let $f(x) = \frac{x-2}{x-5}$ and $g(x) = \sqrt{x-2}$.
 - a. (5 pts) What is the domain of f?
 - b. (5 pts) What is the domain of g?
 - c. (5 pts) Find $(f \circ g)(x)$. (Do not simplify.)
 - d. (5 pts) What is the domain of $(f \circ g)(x)$?


e. Determine each of the following functions (without simplifying) and state the domain of each in *interval notation*.

i.
$$(5 \text{ pts}) (f + g)(x)$$

ii. (5 pts) $\left(\frac{g}{f}\right)(x)$

- 6. (5 pts) Answer *one* of the following:
 - a. Show that $f(x) = \frac{x-1}{x+2}$ is 1-to-1, algebraically.
 - b. Let $f(x) = \frac{x-1}{x+2}$. Find $f^{-1}(x)$.

7. (5 pts) The graph of f is given. Sketch the graph of f^{-1} .

- 8. (5 pts) If f varies jointly as m_1 and m_2 and inversely with the square of r, write the equation describing this relationship.
- 9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.

a.
$$(5 \text{ pts})$$
 $h(x) = 2(x-3)^2 + 3$

#9, continued... Graph using transformations.

b. (5 pts)
$$g(x) = \sqrt{3-x} + 5$$
 (Hint: $3-x = -x + 3$ is one way. $3-x = -(x-3)$ is another.)

10. (5 pts) Find the inverse of f(x) = 3x - 7