\qquad

1. $(10 \mathrm{pts}) f=\{(2,-1),(3,-2),(4,2),(3,4)\}$
a. Function? (Yes/no)
b. If not, why not?
c. If it is a function, is it 1-to-1? (Yes/no)
d. If it is not 1-to-1, why not?
e. Domain?
f. Range?
2. $(5 \mathrm{pts}) \quad g=\{(2,-2),(4,6),(3,2),(11,5)\}$
a. Function? (Yes/no)
b. If not, why not?
c. If it is a function, is it 1-to-1? (Yes/no)
d. If it is not 1-to-1, why not?
e. Domain?
f. Range?
3. (5 pts) Use the horizontal line test to determine if the following functions are 1-to-1 (Yes/No for each graph).

4. (5 pts) Determine whether or not $|y-2|+x=7$ defines y as a function of x. If it does not, show/explain why not.
5. (10 pts) Let $f(x)=x^{2}-5$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
6. Let $f(x)=3 x-5$ and $g(x)=\sqrt{x+7}$.
a. (5 pts) What is the domain of f ? (Use Interval Notation.)
b. (5 pts) What is the domain of g ? (Use Interval Notation.)
c. Determine each of the following functions and state the domain of each in interval notation.
i. $\quad(5 \mathrm{pts})(f+g)(x)$
ii. (5 pts) $\left(\frac{g}{f}\right)(x)$
iii. $(5 \mathrm{pts})(f \circ g)(x)$
iv. $(5 \mathrm{pts})(g \circ f)(x)$
7. (5 pts) Show that $f(x)=\frac{x+1}{x-3}$ is 1-to-1.
8. (5 pts) Let $f(x)=\frac{x+1}{x-3}$. Find $f^{-1}(x)$.
9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.
a. (5 pts) $g(x)=\sqrt{x-3}+5$
b. $(5 \mathrm{pts}) h(x)=-2(x+5)^{2}-3$
10. (5 pts) The graph of f is given. Sketch the graph of f^{-1}.

11. (5 pts) If f varies jointly as q^{2} and h, and $f=-36$ when $q=3$ and $h=2$, find f when $q=4$ and $h=2$.
12. (5 pts) Find the inverse of $f(x)=3 x-7$
