1. State the Intermediate Value Theorem

Suppose that f is a polynomial function and $[a, b]$ is an interval for which $f(a) \neq f(b)$. If k is a number between $f(a)$ and $f(b)$, then there is a number c in the interval (a, b) such that $f(c)=k$.
2. Describe the 3 types of symmetry discussed in Section 3.5.

1. The graph of a function $f(x)$ is symmetric about the y-axis and f is an even function if $f(-x)=f(x)$ for any value of x in the domain of the function. (Section 2.3)
2. The graph of a function $f(x)$ is symmetric about the origin and f is an odd function if $f(-x)=-f(x)$ for any value of x in the domain of the function. (Section 2.3)
3. The graph of a quadratic function $f(x)=a x^{2}+b x+c$ is symmetric about its axis of symmetry, $x=-b /(2 a)$. (Section 3.1)
4. State the Theorem describing behavior at the x-intercepts.

Let a be a root with multiplicity k for a polynomial function.
If k is odd, then the graph crosses the x-axis at $(a, 0)$.
If k is even, then the graph touches but does not cross the x-axis at $(a, 0)$.
4. State the Leading Coefficient Test.

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, the behavior of the graph of f to the left and right is determined as follows:

For n odd and $a_{n}>0, \quad \lim _{x \rightarrow \infty} f(x)=\infty \quad$ and $\quad \lim _{x \rightarrow-\infty} f(x)=-\infty$.
For n odd and $a_{n}<0, \quad \lim _{x \rightarrow \infty} f(x)=-\infty \quad$ and $\quad \lim _{x \rightarrow-\infty} f(x)=\infty$.
For n even and $a_{n}>0, \quad \lim _{x \rightarrow \infty} f(x)=\infty \quad$ and $\quad \lim _{x \rightarrow-\infty} f(x)=\infty$.
For n even and $a_{n}<0, \quad \lim _{x \rightarrow \infty} f(x)=-\infty \quad$ and $\quad \lim _{x \rightarrow-\infty} f(x)=-\infty$.
5. Give the 6 -step strategy for graphing a polynomial.

1. Check for symmetry.
2. Find all real zeros of the polynomial function.
3. Determine the behavior at the corresponding x-intercepts.
4. Determine the behavior as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
5. Calculate several ordered pairs including the y-intercept to verify your suspicions about the shape of the graph.
6. Draw a smooth curve through the points to make the graph.
