1. State whether the relations below represent a function (yes/no). If not, why? State the domain and range of each function. State whether the function is one to one, if it is, state the domain and range of the inverse. $f = \{(2, -1), (-3, -1), (6, 4), (-3, -1), (1, 2)\}$

$$g = \{(3,1), (-2,4), (1,3), (2,5)\}$$

2. Determine whether the equation $y - 9 = (x - 2)^2$ defines y as a function of x. If it does not, show/explain why not, either by a general argument, or by finding an x-value in the domain that corresponds to more than one y-value in the range.

Now try
$$(y-9)^2 = x - 2$$

3. Find the inverse function of $f(x) = 2x^3 - 7$ by reversing the composition.

4.) Let
$$f(x) = x^2 + 5$$
.

a. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$. You may use the alternative version of this given by f(x)-f(c)

$$\frac{f(x)-f(c)}{x-c}$$

b. find the average rate of change of f from x = -1 to x = 1.

5. Let
$$f(x) = \sqrt{2x+4}$$
 and $g(x) = 4x-2$.

a. Determine each of the following functions and state domain of each.

i.
$$(f + g)(x)$$

ii.
$$(f - g)(x)$$

iii.
$$(f \cdot g)(x)$$

iv.
$$\left(\frac{f}{g}\right)(x)$$

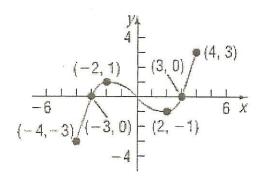
v.
$$\left(\frac{g}{f}\right)(x)$$

6. Determine algebraically whether the following functions are even, odd, or neither.

a.
$$h(x) = \frac{x^4 - x^2 - 3}{x^2}$$

b.
$$\frac{\sqrt{x^2 + x^3 - 5}}{x^5 - x}$$

7. Determine whether each function is one to one.


i)
$$h(x) = 3x - 7$$

ii)
$$g(x) = \frac{x-4}{x+1}$$

iii)
$$v(x) = 3x^2 - 2$$

8. Find functions f and g so that $(f \circ g)(x) = H$, given that $H = (2x - 3)^4$.

9. Use the graph of the function f below to answer the following questions:

- a. The intercepts(Express answers as ordered pairs.)
 - i. (3 pts) x-intercept(s):
 - ii. (3 pts) y-intercept(s):

b. (3 pts) The domain and range:

- c. Intervals of increase/decrease:
 - i. (3 pts) f is increasing on _____.
 - ii. (3 pts) f is decreasing on _____.

d. Extrema:

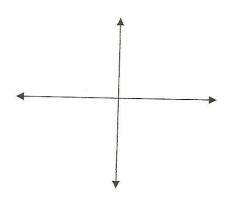
- i. (3 pts) f has local minimum of ____ at ____.
- ii. (2 pts) f has a local maximum of _____ at ____.

10. Graph each of the following functions using techniques of shifting. Compressing, and stretching, and/ or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations and show the *y*-intercept in the final sketch.

a.
$$g(x) = -\sqrt{x+3} + 5$$

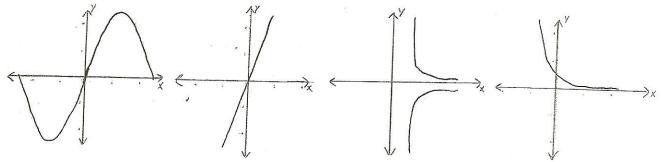
b.
$$g(x) = 2(x-1)^2 - 7$$

c.
$$h(x) = 3|-x-2|+2$$


d.
$$f(x) = \sqrt{3 - x} - 1$$

e.
$$j(x) = -2(x-2)^3 + 2$$

f.
$$f(x) = -4(2-x)^3 - 5$$


11. Let
$$6 = \frac{4}{5}x - 6$$

a. Determine the slope and y-intercept.

b. Use the slope and *y*-intercept to graph *f* here.

- c. Determine the average rate of change of f.
- d. Is f increasing, decreasing or constant?
- 12. Determine which of the following are one-to-one. Indicate by writing "Yes" or "No" on the graphs. State which one isn't a function.

13. For f(x) = 3x, and $g(x) = 2x^2 - 1$, find:

b. (fog)(2)

c.
$$(g \circ g)(2)$$

14. For
$$f(x) = \frac{1}{x+3}$$
 and $g(x) = \frac{2}{x} + 3$, find $(f \circ g)(x)$ and its domain.

15. The velocity v of a falling object is directly proportional to the time t of the fall. If after 4 seconds, the velocity is 88 feet per second, what will the velocity be after 6 seconds?

16. Sketch the graph of
$$f(x) = \begin{cases} x+3 & if -2 \le x \le 1 \\ 5 & if x = 1 \\ -2x+2 & if x > 1 \end{cases}$$
.

Include all intercepts.
State the domain and range in both interval notation and set-builder notation.

17. At the corner Shell station, the revenue R varies directly with the number g of gallons of gasoline sold. If the revenue is \$23.40 when the number of gallons sold is 12, find the linear function that relates revenue R to the number of gallons g of gasoline. Then find the revenue R when the number of gallons of gasoline is 10.5.

18. Let $f(x) = x^3$. Find $f^{-1}(x)$, and graph both f and f^{-1} on the same coordinate axes

19. Let $f(x) = \frac{2x-3}{x+4}$. Find $f^{-1}(x)$ by using the switch-and-solve method. Check your answer.