Do your own work. SHOW your work. When in doubt about how stupid I am, assume the worst.

1. (10 pts) Find the slope of the line between the points $(2,3)$ and $(4,-7)$.
2. (5 pts) Find an equation of the line with slope $m=\frac{3}{5}$, and y-intercept $(0,3)$.
3. (5 pts) Find an equation of the line with slope $m=\frac{3}{5}$ that contains the point $(4,-7)$.
4. (5 pts) Find the slope-intercept form of the line you obtained in \#3.
5. (5 pts) Find the standard form of the line you obtained in \#3. Your work from \#4 should have you partway home on this one.
6. (10 pts) Find an equation of the line whose graph is shown. (Hint: Pick your points in such a way as to make the arithmetic easier.)

7. (10 pts) What is the slope of a line that is...
a. \quad.. parallel to the line $7 x-3 y=11$?
b. ... perpendicular to the line $7 x-3 y=11$? (Basing your answer on part a is just fine.)
8. (10 pts) Sketch the graph of the linear inequality $4 x-3 y \geq 12$.
9. (5 pts) Sketch the graph of the line $y=\frac{2}{3} x-5$.
10. (20 pts) Let $f(x)=x^{2}-3 x+2$ and $g(x)=2 x-7$. Find and simplify the following:
a. $f+g$
b. $f g$
c. $\frac{f}{g}$
d. $f \circ g$
11. (5 pts) Let $f(x)=x^{2}-3 x+2$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
12. (10 pts) Suppose y varies jointly with x and w and inversely with the square of z. If $y=10$, when $x=4, w=5$ and $z=2$, please come up with an equation relating y to x, w, and z. Then use that equation to tell me what y is when $x=7, w=3$ and $z=4$.

Answer up to 2 bonus questions for up to 15 points. I will grade the first 2 you do work on, unless you tell me to omit them.

1. (5 pts) Consider the equation $a x^{2}+b x+c=0$. Write the discriminant.
2. (5 pts) What's the solution of the equation $a x^{2}+b x+c=0$?
3. (5 pts) Solve the inequality $|2 x-3| \geq 3$

4. (5 pts) Factor $420 x^{2}-332 x-1155$ into the product of two binomials.
5. (5 pts) Factor $375 x^{3}-24 y^{9}$
6. (5 pts) Use Pascal's triangle to expand $(2 x-y)^{5}$
7. (5 pts) Factor $4 x^{2}-20 x+17$ (It doesn't factor over the rationals! Your 'ac' method won't work!).
