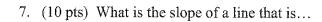
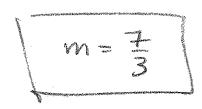
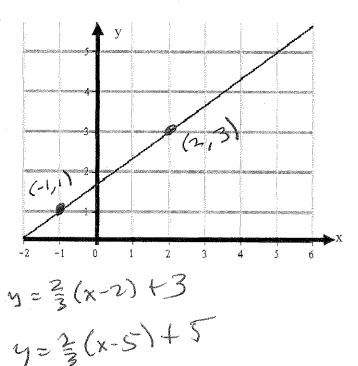
Do your own work. SHOW your work. When in doubt about how stupid I am, assume the worst.

1. (10 pts) Find the slope of the line between the points (2,3) and (4,-7).


2. (5 pts) Find an equation of the line with slope $m = \frac{3}{5}$, and y-intercept (0,3).

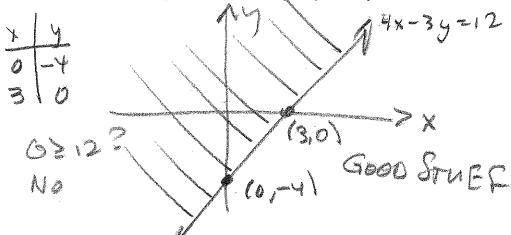
3. (5 pts) Find an equation of the line with slope $m = \frac{3}{5}$ that contains the point (4,-7).


4. (5 pts) Find the slope-intercept form of the line you obtained in #3.


5. (5 pts) Find the standard form of the line you obtained in #3. Your work from #4 should have you partway home on this one.

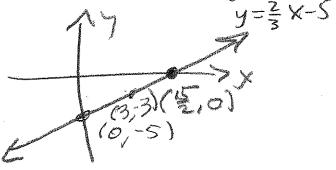
6. (10 pts) Find an equation of the line whose graph is shown. (Hint: Pick your points in such a way as to make the arithmetic easier.)

a. ... parallel to the line 7x - 3y = 11?



$$-3y = -7x + 11$$
 $y = \frac{7}{3}x - \frac{1}{3}$

b. ... perpendicular to the line 7x - 3y = 11? (Basing your answer on part a is just fine.)


8. (10 pts) Sketch the graph of the linear inequality $4x - 3y \ge 12$.

9. (5 pts) Sketch the graph of the line $y = \frac{2}{3}x - 5$.

3 x = 5 ~ (\(\x \))

10. (20 pts) Let $f(x) = x^2 - 3x + 2$ and g(x) = 2x - 7. Find and simplify the following:

a.
$$f+g = \chi^2 - 3 \times + 2 \times + 2 \times - 7 = \left(\chi^2 \times - 5 \right)$$

b. $f_8 = (x^2 - 3x + 2)(2x - 7) = 2x^3 7x^2 - 6x^2 + 21x + 4x - 14$ $=|2x^3-13x^2+25x-14|$

$$c. \frac{f}{g} = \frac{1}{2} \frac{1}{2}$$

$$= (2x-7)^{2}-3(2x-7)+2 = 4x^{2}-28x+49-6x+2+27$$

$$= (4x^{2}-34x+72)$$

11. (5 pts) Let $f(x) = x^2 - 3x + 2$. Simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$.

$$= 2xh+h^2-3h$$

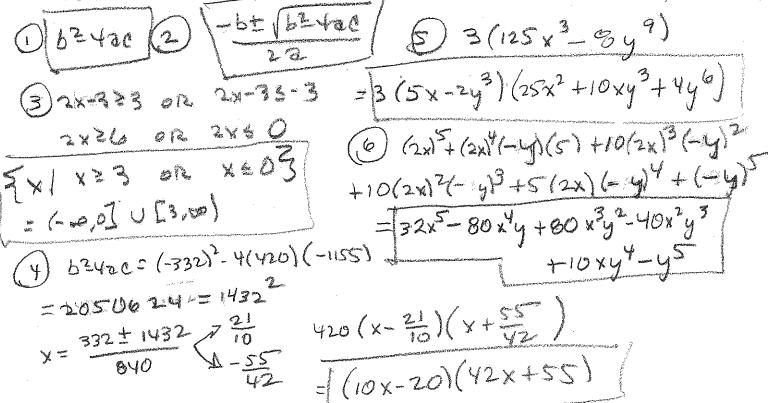
$$+ (2x+h-3)$$

$$= 2x+h-3$$

12. (10 pts) Suppose y varies jointly with x and w and inversely with the square of z. If y = 10, when x = 4, w = 5 and z = 2, please come up with an equation relating y to x, w, and z. Then use that equation to tell me what y is when x = 7, w = 3 and z = 4.

$$y = \frac{x \times x w}{2^{2}}$$

$$10 = \frac{4(5)}{2^{2}} \times \frac{1}{8}$$


$$10 = 5 \times \frac{10}{8}$$

$$10 = \frac{10}{8}$$

$$10 =$$

Answer up to 2 bonus questions for up to 15 points. I will grade the first 2 you do work on, unless you tell me to omit them.

- 1. (5 pts) Consider the equation $ax^2 + bx + c = 0$. Write the discriminant.
- 2. (5 pts) What's the solution of the equation $ax^2 + bx + c = 0$?
- 3. (5 pts) Solve the inequality $|2x-3| \ge 3$
- 4. (5 pts) Factor $420x^2 332x 1155$ into the product of two binomials.
- 5. (5 pts) Factor $375x^3 24y^9$
- 6. (5 pts) Use Pascal's triangle to expand $(2x y)^5$
- 7. (5 pts) Factor $4x^2 20x + 17$ (It doesn't factor over the rationals! Your 'ac' method won't work!).

$$4x^{2}-20x+17=0$$
 $x^{2}-5x+\frac{1}{5}=0$
 $x^{2}-5x+\frac{1}{5}=0$
 $x^{2}-5x+\frac{1}{5}=0$
 $x^{2}-5x+\frac{1}{5}=0$
 $x^{2}-5x+\frac{1}{5}=0$
 $x^{2}-5x+\frac{1}{5}=0$
 $x^{2}-5x+\frac{1}{5}=0$
 $(x-\frac{1}{5})^{2}=-\frac{1}{5}+\frac{1}{5}=+$