Do your own work. SHOW your work. When in doubt about how stupid I am, assume the worst.

1. (5 pts) Simplify $2-7(2 x+3)-7(2-3 x)$
2. Multiply
a. $(5 \mathrm{pts})(2 x-3)(5 x+3)$
b. $(5 \mathrm{pts})(7 x+4 y)^{2}$
c. $(5 \mathrm{pts})(2 x-3)\left(3 x^{2}-5 x+9\right)$
3. (5 pts) Evaluate $b^{2}-4 a c$ if $a=5, b=-9$, and $c=-6$.
4. (5 pts) Factor 33462 into the product (of powers) of primes.
5. (5 pts) Simplify $\sqrt{33462}$
6. (5 pts) Write $\frac{4290}{33462}$ in lowest terms. (You've done part of the work, already.)
7. (5 pts) Find the next term in the sequence.
a. $-5,3,11, \ldots$
b. $-100,20,-4, \ldots$
8. (5 pts) A store sells radios at a price, p. The store owner has found that the number of radios sold, x, is related to price by the following equation: $x=1,000-2 p$. Give the equation for the revenue, R, entirely in terms of the price variable.
9. Factor.
a. $(5 \mathrm{pts}) 150 a^{5} b^{3}-60 a^{4} b^{7}$
b. (5 pts) $x^{2}-3 x-10$
c. $(5 \mathrm{pts}) 9 x^{2}-16$
10. (5 pts) Solve the equation $3 x-7=5 x+11$ for x.
11. (5 pts) Add $\frac{7}{30}+\left(-\frac{5}{42}\right)$
12. (5 pts) Convert 70 kilometers (km) per hour into units of miles per hour. (Hint: $2.54 \mathrm{~cm} \approx 1 \mathrm{in}$, 5280 feet $=$ $1 \mathrm{mi}, 100 \mathrm{~cm}=1 \mathrm{~m}, 1000 \mathrm{~m}=1 \mathrm{~km}$). This might take two lines, if you write as big as I do!
13. Simplify. Assume all variables represent nonzero real numbers. Your final answer should contain only positive exponents.
a. $(5 \mathrm{pts})\left(x^{3} y^{-7}\right)\left(x^{-5} y^{2}\right)$
b. $(5 \mathrm{pts})\left(x^{2} y^{-3}\right)^{-7}\left(x^{-5} y^{5}\right)^{4}$
c. $(5 \mathrm{pts}) \frac{5^{4} x^{7} y^{-5}}{75 x^{2} y^{2}}$
d. $(5 \mathrm{pts}) \frac{\left(6^{-1} x^{2} y^{3}\right)^{-2}}{\left(15 x^{-2} y^{-5}\right)^{4}}$
14. (5 pts) Consider the equation $a x^{2}+b x+c=0$. Write the discriminant.

Bonus stuff. You can add up to 15 points to your score. I grade the first 15 points' worth of attempts that I see.

1. Two-parter:
a. (5 pts) What condition must the discriminant satisfy in order for $a x^{2}+b x+c$ to factor by 'ac'
 method?
b. (5 pts) What condition must the discriminant satisfy in order for $a x^{2}+b x+c$ to be a perfect square trinomial?
2. (5 pts) What's the solution of the equation $a x^{2}+b x+c=0$?
3. (5 pts) Factor $84 x^{3}-72 x^{2}-245 x y+210 y$ into the product of two binomials.
4. (5 pts) Factor $189 x^{2}-138 x-80$ into the product of two binomials.
5. (5 pts) Factor $24 x^{3}-375 y^{6}$
6. (5 pts) Factor $x^{3}+27$, if possible.
7. (5 pts) Use Pascal's triangle to expand $(x-2 y)^{5}$
8. (5 pts) Factor $x^{2}+10 x+20$ (It doesn't factor over the rationals! Your 'ac' method won't work!).
9. (5 pts) What's $\sqrt{-1}$?
10. (5 pts) Give an example of "Powers distribute over products."
11. (5 pts) Give an example of "Products distribute over sums."
