099 Final Thoughts
(C) Graph Line

* Absolute Value Egins ot In neg nalitiresk

$$
\begin{aligned}
& y=5 x-2 \\
& x \mid y \\
& \hline 0 \\
& \hline 0 \\
& \frac{2}{5} \\
& \hline
\end{aligned}
$$

Also graph
Linear Inequalities $\mathbb{C H}_{4}$, in eluded.

$$
\begin{aligned}
& 2 x+7 y=11 \\
& x
\end{aligned}
$$

$$
x=\frac{11}{2}
$$

Graph the system

$$
\begin{aligned}
2 x+5 y & \leq 13 \\
3 x-7 y & \geq 21 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Write an ey'm of the line.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-3}{4-(-2)} \\
&=\frac{-2}{6}=-\frac{1}{3}=m \\
&(-2,3) \\
& y=-\frac{1}{3}(x+2)+3 \\
& E \text { ether one. }
\end{aligned} \begin{aligned}
y & =m\left(x-x_{1}\right)+y_{1} \\
y & =-\frac{1}{8}(x-4)+1
\end{aligned}
$$

Slope of line perpendicular: $m_{\perp}=3$
Use slope flompurious, Right on waiting.

Solve:

$$
\begin{aligned}
& \frac{2}{x+5}+\frac{3}{x+4}=\frac{2 x}{x^{2}+9 x+20} \quad \text { LCD }=(x+4)(x+5) \\
& 2=1, b=9, c=20^{(x+5)(x+4)} \\
& b^{2}-4 a c=9^{2}-4(1)(20) \\
& =81-80 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-a+\sqrt{1}}{2(1)}=\frac{-9 \pm 1}{2} \rho_{-5}^{-4} \\
& (x-(-4))(x-(-5)) \\
& =(x+4)(x+5) \\
& \left(\frac{2}{x+5}\right)\left(\frac{x+4}{x+4}\right)+\left(\frac{3}{x+4}\right)\left(\frac{x+5}{x+5}\right)=\frac{2 x}{(x+4)(x+5)} \\
& 2 x+8+3 x+15=2 x \\
& \text { (} x \neq-4, x \neq-5 \text {) } \\
& 5 x+23=2 x \\
& \begin{aligned}
3 x & =-23 \\
x & =-\frac{23}{3}
\end{aligned} \\
& \text { Doit forget } \\
& \text { where it camp } \\
& \text { from. }
\end{aligned}
$$

55.7

Divide $\frac{3 x^{3}-5 x^{2}+2 x-1}{x-2}$

2) | 3 | -5 | 2 | -1 |
| ---: | ---: | ---: | ---: |
| 6 | 2 | 8 | |
| x^{2} | 1_{x} | 4_{c} | 7 |

$3 x^{3}-5 x^{2}+2 x-1=(x-2)\left(3 x^{2}+x+4\right)+7$
If $f(x)=3 x^{3}-5 x^{2}+2 x-1$,
what's $f(2)$?

$$
f(2)=7
$$

$$
\begin{gathered}
\frac{2 x^{4}+x^{3}+4 x-3}{2 x^{2}-x+3} \quad \frac{2 x^{4}}{2 x^{2}}=x^{2} \\
2 x^{2}-x+3 \left\lvert\, \frac{x^{2}+x-1+3 x-5 \frac{2 x^{3}}{2 x^{2}}}{2 x^{4}+x^{3}+0 x^{2}+7 x-8}=x\right. \\
\frac{-\left(2 x^{4}-x^{3}+3 x^{2}\right)}{2 x^{3}-3 x^{2}+7 x-8} \\
\frac{-\left(2 x^{2}-x^{2}+8 x\right.}{2 x^{2}}=-1 \quad \frac{-\left(-2 x^{2}+4 x-8\right.}{8 x-3)} \\
\frac{-(-5 x-5}{2 x}
\end{gathered}
$$

$$
\begin{aligned}
& \$ 6.1,6.2 \\
& \sqrt{64 x^{5} y^{10}} \\
& =\sqrt{2^{6} x^{5} y^{10}} \\
& =2^{3} x^{2} y^{5} \sqrt{x} \\
& \sqrt{x^{4} \cdot x^{1}}=\sqrt{x^{4}} \sqrt{x^{1}} \\
& =x^{2} \sqrt{x} \\
& x^{5}=x^{4} x^{1} \\
& \sqrt{x^{4}}=\left(x^{4}\right)^{\frac{1}{2}} \\
& =x^{2} \\
& \sqrt{y^{10}}=y^{\frac{10}{2}}=y^{5}
\end{aligned}
$$

6.4 Bonus

Rationalize Denomimator:

$$
\begin{aligned}
& \left(\frac{2+\sqrt{3}}{5-\sqrt{2}}\right)\left(\frac{5+\sqrt{2}}{5+\sqrt{2}}\right)=\frac{10+\frac{2 \sqrt{2}+5 \sqrt{3}+\sqrt{6}}{25-2}}{5^{2}-(\sqrt{2})^{2}}=\frac{10+2 \sqrt{2}+5 \sqrt{3}+\sqrt{6}}{23} \\
& =25-2
\end{aligned}
$$

$$
\begin{aligned}
& \$ 6.5 \\
& (x-3)^{2}=x^{2}-6 x+9 \\
& \sqrt{2 x-1}=x-2 \\
& (3 x+5)^{2}=9 x^{2}+30 x+25 \\
& (\sqrt{2 x-1})^{2}=(x-2)^{2} \\
& 2 x-1=x^{2}-4 x+4 \\
& x^{2}-6 x+5=0 \\
& (x-5)(x-1)=0 \\
& x=5 \text { or } x=1 \\
& \text { Both in Domain } \\
& (7 x-3)^{2}=49 x^{2}-42 x+9 \\
& \text { Bonus } \\
& \text { Domain :" } \\
& x-2 \text { Ail reals } \\
& \sqrt{2 x-1} \text { Need } \\
& 2 x-1 \geq 0 \\
& 2 \times 211 \\
& x \geq \frac{1}{2} \\
& \left\{x \left\lvert\, x \geq \frac{1}{2}\right.\right\} \\
& =[-1 / 2, \infty) \\
& x=\bar{s} \text { Final Answer } \\
& \sqrt{1} \stackrel{?}{=}-1 \text { Nope } \\
& x=1 \text { is extrane os }
\end{aligned}
$$

$A=B \Rightarrow A^{2}=B^{2}$ always.
Suse $A^{2}=B^{2}$ to solve $A=B$

$$
\begin{aligned}
&(\sqrt{2 x-1})^{2}=(x-2)^{2} \\
&: \\
& \text { But } A^{2}=B^{2} \Longrightarrow \\
& A= \pm B \text { \& } \\
& A=-B \text { ant what }
\end{aligned}
$$

we want.
That's why

$$
\begin{aligned}
& x=1 \text { was } \\
& \text { oxtrane }
\end{aligned}
$$ extraneous.

$$
\begin{aligned}
& \text { SG.G Multiply } \\
& \quad \frac{(3-5 i)(4-7 i)}{}=12-21 i-20 i+35 i^{2} \\
& =12-41 i-35 \\
& =-23-41 i \\
& \frac{3-5 i}{4-7 i} \\
& =\left(\frac{3-5 i}{4-7 i}\right)\left(\frac{4+7 i}{4+7 i}\right) \\
& =\frac{12+21 i-20 i-35 i}{4{ }^{2}+7^{2}} \\
& =\frac{47+i}{65}=\frac{47}{65}+\frac{1}{65} i=a+6 i
\end{aligned}
$$

$$
\begin{aligned}
& \text { optional Page } \\
& (2 x-5 y)^{4}= \\
& 1^{1},(a+b)^{2}=12^{2} \\
& 12,1+2 a b \\
& 1^{1} 4^{3} 6^{3} 4^{1} \text {, } \\
& 1(2 x)^{4}\left(-5 y^{5}+\underline{4}(2 x)^{3}-5-5 y\right)+6(2 x)^{2}(-5 y)^{2}+\underline{4}(2 x)(-5 y)^{3}+ \\
& 1.2 x)^{4}(-5 y)^{4} \\
& =16 x^{4}-160 x^{3} y+600 x^{2} y^{2}-1000 x y^{3}+625 y^{4} \\
& 16 x^{4}-160 x^{3}(i)+600 x^{2}\left(\frac{i^{2}}{2}-1000 \times\left(i^{3}\right)\right. \\
& 16 x^{4}-160 i x^{3}-600 x^{2}+1000 i x+625 \\
& (2-5 i)^{4} \\
& i^{3}=i^{2}-i=-1 i=-i \\
& i^{4}=i^{3}-i=-i \cdot i \\
& =-i^{2} \\
& =-(-1) \\
& =+1 \\
& \text { } 26-160 i-600+1000 i+625 \\
& 41+840 i
\end{aligned}
$$

7.1 I
solve by
completing the
square

$$
x^{2}-8 x-7=0
$$

$x^{2}-8 x+4^{2}=7+16$

$$
(x-4)^{2}=23
$$

$$
x-4= \pm \sqrt{23}
$$

$$
x=4 \pm \sqrt{23}
$$

7.1 II

Rewrite in the form $a(x-h)^{2}+k$

$$
x^{2}-8 x-7
$$

$$
=x^{2}-8 x+4^{2}-4^{2}-7
$$

$$
=(x-4)^{2}-23
$$

$$
(h, k)=(4,-23)
$$

$$
\begin{array}{rlr}
2 x^{2}-4 x-8 & \\
\begin{array}{rl}
I & I I \\
2 x^{2}-4 x-8=0 & \\
x^{2}-2 x-4=0 & = \\
x^{2}-2 x+1^{2}=4+1^{2} & 2\left(x^{2}-2 x\right)-8 \\
(x-1)^{2}=5 & 2\left(x^{2}-2 x+1^{2}\right)-2\left(1^{2}\right)-8 \\
x-1= \pm \sqrt{5} & = \\
x=1 \pm \sqrt{5} & = \\
& (h, k)=(1,-10)
\end{array}
\end{array}
$$

DOMAIN \sim Bad
$\sqrt{\text { negative }} \mathrm{Bad}$

$$
\frac{3 x-7}{x^{2}-5 x+6}
$$

Domain: $\{x \mid x \neq 2$ and $x \neq 3\}$
Need: $x^{2}-5 x+6 \neq 0$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-5 x+6 \neq 7 \\
(x-3)(x-2) \neq 0 \\
x \neq 2, x \neq 3
\end{array} \quad \text { NOT }(x=3 \text { or } x=2) \\
& \text { is } x \neq 3 \text { and } x \neq 2
\end{aligned}
$$

$\sqrt{x-3}$
Need:

$$
\begin{gathered}
x-3 \geq 0 \\
x \geq 3 \\
\{x \mid x \geq 3\}=[3, \infty)
\end{gathered}
$$

$$
\frac{3 x-7}{\sqrt{x^{2}-5 x+6}}
$$

$$
\begin{aligned}
i^{58}=\left(i^{2}\right)^{29} & =(-1)^{29}=-1 \\
i^{77}=i^{76} i^{1} & =\left(i^{2}\right)^{38} i \\
& =(-1)^{38} i=i
\end{aligned}
$$

$\begin{gathered}\left.\text { Need } x^{2}-5 x+6 \geq 0\right\} \\ \text { and }\end{gathered} x^{2}-5 x+6>0$

$$
x^{2}-5 x+6 \neq 0
$$

where's $x^{2}-5 x+6=0$?
$x=2, x=3$ Draw picture
 want

$$
\begin{aligned}
& \text { want } \mid x<2 \text { or } x>3\} \\
& (-\infty, 2) \cup(3, \infty)
\end{aligned}
$$

