$5.7 \# 35$
Interpent:

$$
\frac{2 x^{3}-9 x^{2}+11 x-6}{2 x^{2}-3 x+2}=x-3
$$

$$
2 x ^ { 2 } - 3 x + 2 \longdiv { x - 3 r 0 } \quad \frac { - 6 x ^ { 2 } } { 2 x ^ { 3 } - 9 x ^ { 2 } + 1 1 x - 6 } = - 3
$$

$$
-\frac{\left(2 x^{3}-3 x^{2}+2 x\right)}{-6 x^{2}+9 x-6}
$$

Intengnt

$$
\frac{2 x^{3}}{2 x^{2}}=x
$$

$$
2 x^{3}-9 x^{2}+11 x-6=\left(2 x^{2}-3 x+2\right)(x-3)
$$

$$
\begin{aligned}
& \frac{2 x^{3}-9 x^{2}+11 x-6}{x-7}=2 x^{2}+5 x+4+\frac{316}{x-7} \\
& x - 7 \longdiv { 2 x ^ { 2 } + 5 x + 4 6 r 3 1 6 } \\
& \begin{array}{r}
46 \\
7 \\
\hline 322
\end{array} \\
& \frac{-\left(2 x^{3}-14 x^{2}\right)}{5 x^{2}+11 x-6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { B.4. } \frac{-(46 x-322)}{316}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Dividend }}{\text { Divisor }}= \text { Quotient }+\frac{\text { Remainder }}{\text { Divisor }} \\
& \frac{29}{3}=9+\frac{2}{3} \\
& \text { Dividend }=(\text { Divisor })(\text { Quotient })+\text { Remainders } \\
& 29=(3)(9)+2 \quad * \\
& \frac{2 x^{3}-9 x^{2}+11 x-6}{x^{\prime}-7}
\end{aligned}
$$

Synthetic Division.

$$
\begin{array}{cccc}
7 J 2 & -9 & 11 & -6 \\
& .4 & 35 & 322 \\
\hline 2 & 5 & 46 & 316 \\
x^{2} & x^{\prime} & c & r \\
2 x^{2}+5 x+46 & r & 316 \\
2 x^{2}+5 x+46 & r & 316
\end{array}
$$

This wale shows that

$$
P(x)=2 x^{3}-9 x^{2}+11 x-6=(x-7)\left(2 x^{2}+5 x+46\right)+316
$$

what's $P(7)$? $\quad \frac{1}{7}$

$$
=2(7)^{3}-9(7)^{2}+11(7)-6=316
$$

To find $P(7)$, divide by $x-7$ d
gala the rem $\quad 11=101$

$$
f(x)=3 x^{5}-4 x^{3}+7 x^{2}-11 x-20
$$

$$
\begin{aligned}
& \text { and } P(-3)_{4}=469 \\
& x^{5} x^{3} x^{3} x^{2} \quad x^{\prime} \quad c \\
& -3] 3 \rightarrow 0 \quad-4 \quad 7 \quad-11-20
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
163 \\
3 \\
\hline 489
\end{array} \\
& \text { the } x^{4} \text { spot }
\end{aligned}
$$

Shul Rational Exponents

$$
\sqrt[3]{.125}=\sqrt[3]{\frac{125}{1000}}=\frac{\sqrt[3]{125}}{\sqrt[3]{1000}}
$$

is radical power of quotient.

$$
\begin{aligned}
& \left(\frac{x^{2}}{y}\right)^{5}=\frac{\left(x^{2}\right)^{5}}{y^{5}} \\
& \sqrt[3]{5^{3}}=\frac{\sqrt[3]{5^{-3}}}{\sqrt[3]{2^{3} 5^{3}} \sqrt[3]{5^{3}}}=\frac{5^{\frac{3}{3}}}{2^{\frac{3}{3}} 5^{\frac{3}{3}}}=\frac{5}{2 \cdot 5}=\frac{1}{2} \\
& \frac{125}{1000}=\frac{5^{3}}{2^{3} \cdot 5^{3}}=\frac{1}{2^{3}}=\frac{1}{8}
\end{aligned}
$$

so $\sqrt[3]{\frac{1}{8}}=\frac{\sqrt[3]{1}}{\sqrt[3]{8}}=\frac{1}{2}$

$$
\sqrt{x^{2}}=\sqrt{|x|=\left\{\begin{array}{cl}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.}
$$

Let $\frac{x=-3}{x=+3} \Rightarrow \sqrt{x^{2}}=-x$

$$
\sqrt{x^{2}}=\sqrt{(-3)^{2}}=\sqrt{9}=3=-x
$$

is the primcipal square

$$
\begin{aligned}
1-5 \mid & =5 \\
151 & =5
\end{aligned}
$$ noot. Noover megative.

In $S 6.1$, they assume the variables aren't negative of try to shine you on this very important $\sqrt{-A} C T$:

$$
\sqrt{x^{2}}=|x|
$$

In 6.1 , you con get away with

$$
\sqrt{x^{2}}=x \text {, but you san get away with }
$$

$$
\begin{aligned}
x^{2}=1 & \\
\sqrt{x^{2}}=\sqrt{1} & 49^{\frac{1}{2}}=\sqrt{49} \\
|x|=1 & \left(7^{2}\right)^{\frac{1}{2}}=\sqrt{7^{2}}= \\
x & = \pm 1
\end{aligned} 7^{2\left(\frac{1}{2}\right)}=7^{1}=7
$$

$$
\begin{aligned}
& \begin{aligned}
4^{\frac{5}{2}}=4^{\left(\frac{1}{2}\right)(5)} & =\left(4^{\frac{1}{2}}\right)^{5}=2^{5}=32 \\
& \left(9^{3}\right)^{\frac{1}{2}} \\
9^{\frac{3}{2}} & =\left(\left(9^{\frac{1}{2}}\right)^{3}\right.
\end{aligned} \\
& a^{b c}=\left(a^{b}\right)^{c} \quad 9=3^{2} \\
& \left(9^{\frac{1}{2}}\right)^{3}=\left(\left(3^{2}\right)^{\frac{1}{2}}\right)^{3} \\
& =\left(3^{(2)\left(\frac{1}{2}\right)}\right)^{3} \\
& \left(x^{\frac{3}{4}}\right)^{\frac{4}{3}}=x^{\left(\frac{3}{4}\right)\left(\frac{4}{3}\right)}=x \quad=3^{3}=27 \\
& \frac{x^{\frac{5}{6}}}{x^{\frac{2}{3}}}=x^{\frac{5}{6}-\frac{2}{3} \cdot \frac{2}{2}}=x^{\frac{1}{6}}=\sqrt[6]{x} \\
& \sqrt{-144} \quad \text { ainit real } \\
& =\sqrt{(-1)(144)}=\sqrt{-1} \sqrt{144} \\
& =i .12 \\
& =12 i \\
& \sqrt[3]{-1}=-1
\end{aligned}
$$

