(1) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-7-3}{4-2}=\frac{-10}{2}=-5$
(2) $y=\frac{3}{5} x+3$
(3)

$$
\begin{aligned}
& y=\frac{3}{5}(x-4)-7 \quad(4,-7) \\
& y=m\left(x-x_{1}\right)+y_{1} \\
& =\frac{3}{5} x-\frac{3}{5}(4)-7 \\
& \left(\frac{3}{5}\right)\left(\frac{4}{1}\right)=\frac{12}{5} \\
& -\frac{12}{5}-\frac{7}{1} \cdot \frac{5}{5} \\
& =-\frac{12}{5}-\frac{35}{5}=-\frac{47}{5} \\
& \text { (4) } y=\frac{3}{5} x-\frac{47}{5}
\end{aligned}
$$

(5) $\frac{-\frac{3}{5} x+y=-\frac{4}{5}}{-3 x+5 y=-47}$

$$
\begin{aligned}
&(2,3) \\
& m=\frac{5-3}{5-2}=\frac{2}{3} \\
& y=m\left(x-x_{1}\right)+y 1 \\
& y=\frac{2}{3}(x+1)+1 \\
& y=\frac{2}{3}(x-2)+3 \\
& y=\frac{2}{3}(x-5)+5
\end{aligned}
$$

(7)

$$
\begin{aligned}
7 x-3 y & =11 \\
-3 y & =-7 x+11 \\
y & =\frac{-\frac{7}{-3} x}{-3}+\frac{11}{-3} \\
m & =\frac{7}{3} \quad \text { (2) } \\
m_{\perp} & =-\frac{3}{7} \text { (b) }
\end{aligned}
$$

(8)

$$
y=\frac{2}{3} x-5
$$

$(3)\left(\frac{2}{3} x-5=0\right)$

$$
\begin{aligned}
& f+g=\frac{x^{2}-3 x+2+2 x-7}{} \\
&= x^{2}-x-5 \\
& f g=\left(x^{2}-3 x+2\right)(2 x-7) \\
&=2 x^{3}-7 x^{2} \\
& \frac{x^{2}-3 x+2}{2 x-7}-6 x^{2}+21 x \\
& 4 x-14
\end{aligned}
$$

(d)

$$
\left.\begin{array}{c}
f \circ g=f(g(x))=(2 x-7)^{2}-3(2 x-7)+2 \\
=4 x^{2}-28 x+49-6 x+21+2 \\
=4 x^{2}-34 x+72 \\
(2-b)^{2}=2^{2}-2 a b+b^{2} \\
(2 x)^{2}-2(2 x)(7)+7^{2} \\
=4 x^{2}-28 x+49
\end{array}\right] \begin{aligned}
& f(x)=x^{2}-3 x+2 \Rightarrow \frac{f(x+h)}{h}=\frac{f(x+h)-f(x)+h}{h}=\frac{(x+h)^{2}-3(x+h)+2-\left(x^{2}-3 x+2\right)}{h} \\
& =\frac{x^{2}+2 x h+h^{2}-3 x-3 h+2-x^{2}+3 x-2}{h} \\
& =\frac{2 x h+h^{2}-3 h}{h}=\frac{h(2 x+h-3)}{h}=2 x+h-3
\end{aligned}
$$

$$
\begin{array}{r}
y=\frac{x w}{z^{2}} k \\
\frac{4(5)}{2^{2}} k=10 \\
5 k=10 \\
k=2 \\
y=\frac{(7)(3)}{4^{2}} \cdot 2=\frac{21}{8}
\end{array}
$$

(1) $b^{2}-4 a c$
(2) $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
(3) $|2 x-3| \geq 3$

$$
\begin{aligned}
& 2 x-3 \geq 3 \text { or } 2 x-3 \leq-3 \\
& 2 x \geq 6 \quad 2 x \leqslant 0 \\
& \{x \mid x \geq 3 \text { or } x \leq 0\} \\
& \text { (5) } 375 x^{3}-24 y^{9} \\
& 3.5^{7} x^{3}-3.2^{3}\left(y^{3}\right)^{3} \\
& \begin{array}{cc}
3!375 & 3<24 \\
5(125 & 2<8 \\
5[25 & 2(4 \\
2
\end{array} \\
& =3\left(5^{3} x^{3}-2^{3}\left(y^{3}\right)^{3}\right)=3\left((5 x)^{3}-\left(2 y^{3}\right)^{3}\right)^{5}
\end{aligned}
$$

$$
\begin{gathered}
=3\left(5 x-2 y^{3}\right)\left((5 x)^{2}+(5 x)\left(2 y^{3}\right)+\left(2 y^{3}\right)^{2}\right)^{y^{9}}\left(y^{3} y^{3}\right. \\
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
\end{gathered}
$$

(6)

$$
\begin{aligned}
& \text { (7) } 4 x^{2}-20 x+17 \\
& a=4, b=-20, c=17 \\
& b^{2}-4 a c=(-20)^{2}-4(4)(17) \\
& =400-272 \\
& 2128 \\
& 2 \longdiv { 6 4 } \\
& =128 \leadsto \sqrt{128}=8 \sqrt{2} \begin{array}{l}
2 \cdot(32 \\
2 \\
2
\end{array} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& {\sqrt{2 \cdot 2^{6}}}^{2 \mathrm{C}_{4}^{2}} \\
& =\frac{20 \pm 8 \sqrt{2}}{2(y)} \\
& =2^{3} \sqrt{2} \\
& =8 \sqrt{2} \\
& =\frac{x(5 \pm 2 \sqrt{2})}{2(y)} \\
& =\frac{5 \pm 2 \sqrt{2}}{2} \\
& 4\left(x-\left(\frac{5+2 \sqrt{2}}{2}\right)\right)\left(x-\left(\frac{5-2 \sqrt{2}}{2}\right)\right) \\
& =(2 x-(5+2 \sqrt{21})(2 x-(5-2 \sqrt{2})) \\
& \text { Breckin } \\
& 2(8 \\
& \text { - } \\
& =(2 x-(5+2 \sqrt{21})(2 x-(5-2 \sqrt{2}))
\end{aligned}
$$

Find where $3 x+y=7$ and

$$
\text { Substitution } 2 x-3 y=6 \text { intersect }
$$

$$
y=-3 x+7
$$

$2 x-3(-3 x+7)=6$ Solve for x :

$$
2 x+9 x-21=6
$$

$$
||x-2|=6
$$

$$
\rightarrow y=-3 x+7
$$

$$
11 x=27
$$

$$
=-3\left(\frac{27}{11}\right)+7
$$

$$
x=\frac{27}{11}
$$

$$
=-\frac{81}{11}+\frac{77}{11}=-\frac{4}{11}=y
$$

Addition / Elimination Method Not required.
Substitution
22 4.1
(22)
(15)

$$
\begin{equation*}
\left(\frac{1}{2} x+\frac{1}{3} y=\frac{2}{3}\right) \tag{6}
\end{equation*}
$$

$$
\text { LCD: } \frac{1}{2} \frac{1}{3} \frac{2}{3}
$$

$$
\left(\frac{2}{3} x+\frac{2}{5} y=\frac{14}{15}\right)
$$

$$
L C D=3.5-\frac{2}{3}, \frac{2}{5}, \frac{14}{3 \cdot 5}
$$

$$
-3 x+2 y=4
$$

$$
\left(\frac{6}{\frac{6}{1}}\right)\left(\frac{x}{x}\right)=3 x
$$

$$
\begin{aligned}
& 10 x+6 y=14 \\
& \rightarrow 3 x+2 y=4
\end{aligned}
$$

Solve

$$
2 y=-3 x+4
$$

for y

$$
\left\{\begin{array}{l}
1 y=\frac{-3 x+4}{2} \\
10 x+\frac{6}{6}\left(\frac{-3 x+4}{2}\right)=14 \\
10 x-9 x+12=14
\end{array}\right\}
$$

for y in other eg'm. Solve for y
$x=2 \Rightarrow y$

$$
\begin{aligned}
& \Rightarrow=\frac{-3(2)+4}{2} \\
&=\frac{-6+4}{2}=-\frac{2}{2}=-1 \\
& y=-1
\end{aligned},
$$

(16) $S^{\prime} 4.2$

$$
\begin{gathered}
6 x-2 y+z=5 \\
3 x+y+3 z=7 \\
x+4 y-z=4 \\
3 x+y+3(-6 x+2 y+5)=7 \\
x+4 y-(-6 x+2 y+5)=4 \\
3 x+y-18 x+6 y+15=7 \\
-15 x+7 y=-8 \\
x+4 y+6 x-2 y-5=4 \\
7 x+2 y=9 \\
-15 x+7 y=-8 \\
7 x+2 y=9 \\
7 \\
7 x+2\left(\frac{15 x-8}{7}\right)=9 \\
7+2 y+5 \\
79 x+2
\end{gathered}
$$

$$
\begin{aligned}
& \begin{aligned}
6 x-2 y+z & =5 \\
3 x+y+3 z & =7 \\
x+4 y-z & =4
\end{aligned} \quad\left[\begin{array}{l}
x+4 y-z=4 \\
6 x-2 y+z
\end{array} \quad \begin{array}{l}
E_{1} \\
3 x+y+3 z
\end{array}\right. \\
& -6 E 1 \quad-6 x-24 y+6 z=-24 \\
& \begin{aligned}
\text { E2 } 6 x-2 y+z & =5 \\
-26 y+7 z & =-19
\end{aligned} \\
& -3 \in 1 \quad-3 x-12 y+3 z=-12 \\
& \begin{aligned}
E 3 \quad 3 x+y+3 z & =7 \\
-11 y+6 z & =-5
\end{aligned}
\end{aligned}
$$

Naw System:

$$
\begin{aligned}
& 11(-24 y+7 z=-19) \\
& -26(-11 y+6 z=-5) \\
& \text { "E1:-286y+77z=-209 } \\
& 286 y-156 z=130 \\
& -79 z=-79 \\
& z=\frac{-79}{-79}=1 \\
& -11 y+6(1)=-5 \\
& -11 y=-1 \\
& y=1
\end{aligned}
$$

$$
\begin{gathered}
x+4 y-z=4 \\
x+y(1)-1=4 \\
x+3=4 \\
x=1
\end{gathered}
$$

Sui. 3 Mixture Rob's
How many ounces of $30 \% \mathrm{HCl}$ of 80% HEl to get 1 ounces of $50 \% \not H Q$

Let $x=\operatorname{ant}$ of $30 \% \mathrm{HCl}(\mathrm{Oz})$

$$
y=\cdots \quad \cdots 80 \% \cdots(o z)
$$

Then $x+y=10 \rightarrow y=10-x$
Ant of Pure Acid = Amt of Pure Acid

$$
\begin{aligned}
& .3 x+.8 y=.5(10)=5 \\
& 3 x+8 y=50 \\
& 3 x+8(10-x)=50 \\
& 3 x+80-8 x=50 \\
& \frac{-5 x=-30 \quad x y z-t e x+b o o k s}{x=6} \\
& y=4
\end{aligned}
$$

Graph the SYSTEM of linear inequalities

