$$
\begin{aligned}
&\left(-25, \frac{1}{2}\right),\left(-4, \frac{1}{3}\right) \\
&\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \\
& m= \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\frac{1}{3}-\frac{1}{2}}{-4-(-2)}=\frac{\frac{1}{3} \cdot \frac{2}{2}-\frac{1}{2} \cdot \frac{3}{3}}{-4+2}=\frac{\frac{2-3}{6}}{-2} \\
&= \frac{-\frac{1}{6}}{-2}=\frac{-\frac{1}{6}}{-\frac{2}{1}}=\left(-\frac{1}{6}\right)\left(-\frac{1}{2}\right)=\frac{1}{12}=m
\end{aligned}
$$

(11)

$$
\begin{aligned}
\begin{aligned}
3 x+7 y & =5 \\
-3 x \quad & =-3 x
\end{aligned} \quad \begin{aligned}
& m=\text { coefficient } \\
& 7 y=-3 x+5 \\
& y=\frac{-3 x+5}{7}=\frac{-3 x}{7}+\frac{5}{7}=-\frac{3}{7} x+\frac{5}{7} \\
& \Longrightarrow m=-\frac{3}{7} \\
& A x+B y=C \text { of } x \\
& m=-\frac{A}{B}
\end{aligned} &
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} \\
& y=x^{2}-x \quad S \underline{E}{ }^{\top} 0 \\
& \Rightarrow \quad x(x-1)=0 \\
& \frac{x=0}{?} \text { or } x-1=0 \\
& \frac{x=1}{2} \\
& y=x^{2}-x=0 \quad 3 x^{2}+2 x-5 \\
& =x^{2}-x+0 \quad a=3, b=3, d=-5 \\
& a=1, b=-1, c=0 \\
& b^{2}-4 a c=(-1)^{2}-4(1)(0) \\
& \begin{aligned}
& b^{2}-4 a c=(-1)^{2}-4(1) \\
&=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{+1 \pm 1}{2(1)}=\frac{1 \pm 1}{2} \quad \frac{1-1}{2}=0
\end{aligned} \\
& \begin{array}{l}
3 x^{2}+2 x-5 \\
2=3, b=3, c=-5
\end{array}
\end{aligned}
$$

$$
y=m x+\frac{b}{G}(0, b)
$$

yin: $x=0 \quad y=m(0)+b \Longrightarrow y=b \leadsto(0, b)$
x-int: $y=0 \quad 0=m x+b$ \$ solve for x. $\leadsto\left(\frac{b}{m}, 0\right)$ is the point on the graph.

$$
\begin{aligned}
m x+b & =0 \\
m x & =-b \\
x & =-\frac{b}{m}
\end{aligned}
$$

S3.4 linear Inequalities
Scratch out the bad stuff! S3.4 \#5 1-15,21-39
83.5 Functions

$$
\$ 35 \# 51-17, \frac{19-22}{\mathrm{ALL}}, 23-29,33 \times \frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{r^{2}}
$$

Draw the pictures?
,5 3.6 \#s $1-45,53$ Function Notation

$$
f(x)
$$

S3.7 Variation
\# 5 1- $1,24,26$

$$
S 3.8 \# 51-21,27-37, \frac{39-44}{A L}
$$

Operations on Functions

S'3.4 Linear Inequalities.
A line divides the plane into 2 half-planes

Test :

$$
\begin{gathered}
2(0)+3(0)>6 ? \\
0>6 ? \\
\mathrm{No} .
\end{gathered}
$$

$(0,0)$ is bad
Scratch it out
Label the Good Stuff

$$
\begin{aligned}
& \begin{array}{|l|l}
\pm 40 & x \\
2
\end{array}+\frac{y}{3}<1 \\
& \begin{array}{l|l}
x & y \\
0 & 3 \\
2 & \frac{y}{3} \\
\hline
\end{array}
\end{aligned}
$$

$\$ 3.5$ Functions

A relation is a rule for sending things from one place to things in another place

$$
R=\{(\text { Joe, Sue l }),(\text { Joe, } M \text { eg }),(\text { Tom, meg }),(\text { Bill, } \text { Kim })\}
$$

A function is a relation that only has one output for ore input.

Guys canst foal around!
The relation, above, is NOT a function.

We generally consider y as a function of x.

$$
y=3 x+2
$$

x is the insert.
y is what we did to x.
Here's a picture of that rule:

$$
\begin{array}{r}
y=3 x+2 \text { SET } \\
3 x=-2 \\
x=-\frac{2}{3}
\end{array}
$$

Petty much $A N Y T H I N G$ with y. all by itself and any expression in the variable x is a function. Just can' 1 have" \pm " in the expression

$$
y=\sqrt{x} \quad y=\frac{x^{2}-5 x+7}{\sqrt{x-1}+11}
$$

pictures of $y=$ function of x

when y is a function of x, we write $y=f(x)$

$$
y=3 x+2 \Longleftrightarrow f(x)=3 x+2
$$

we say " $y=f$ of x "
This x is an input
It is NOT f times x.
If $f(x)=3 x+2$, what's $f(7)$?

$$
\begin{aligned}
f(7) & =3(7)+2 \\
& =21+2=23
\end{aligned}
$$

$$
f(\Theta)=3 \Theta+2
$$

$$
f(\square)=3 \square+2
$$

$$
f(a+b)=3(a+b)+2
$$

$$
f(x)=x^{2}
$$

$$
f(x+2)=(x+2)^{2}
$$

Shift left 2 units!

$$
\begin{aligned}
& S_{3.6}+5 \quad 13-24 \\
& f(x)=2 x-5, g(x)=x^{2}+3 x+4 \\
& 24 g(a+2) \\
& =(a+2)^{2}+3(a+2)+4 \\
& =a^{2}+4 a+4+3 a+6+4 \quad(x+y)^{2}= \\
& =a^{2}+7 a+14 \quad x^{2}+2 x y+y^{2} \\
& g(a)+2=\left(a^{2}+3 a+4\right)+2 \\
& =a^{2}+3 a+6
\end{aligned}
$$

Be SURE you know the difference

$$
\begin{aligned}
& f=\left\{(1,4),(-2,0),\left(3, \frac{1}{2}\right),(\pi, 0)\right\} \\
& f(1)=4 \quad f(\pi)=0
\end{aligned}
$$

Let $f(x)=x^{2}+2 x-1$
simplify $f(x+h)$

Standard Inst Question

Simplify $\frac{f(x+h)-f(x)}{h}=$ Difference Quotient

$$
=\frac{h(2 x+h+2)}{h}=2 x+2
$$

(xu.)

