$$
\begin{gathered}
|3 x+2|=|5 x-7| \\
3 x+2=|5 x-2| \quad \text { or } \quad 3 x+2=-|5 x-7| \\
|5 x-7|=3 x+2 \quad-|5 x-7|=3 x+2 \\
5 x-7=3 x+2 \quad-5 x-7=-(3 x+2) \quad \left\lvert\, \begin{array}{rl}
|5 x-7|=-3 x-2 \\
5 x-7=-3 x-208 & 5 x-7=-(-3 x-2)
\end{array}\right.
\end{gathered}
$$

$$
3 x+2=5 x-7 \quad \text { or } \quad 3 x+2=-5 x+7
$$

is how these are done

$$
\begin{aligned}
& \begin{array}{l}
|3 x-7|<-3 \quad \text { Nevah! } \\
|3 x-7|>-3 \quad \text { Always }
\end{array} \\
& \begin{array}{l}
\text { AND } \quad|3 x-7|<3 \\
3 x-7<3 \quad \text { AND } 3 x-7>-3
\end{array} \\
& \begin{array}{l}
\text { OR } \quad \longleftrightarrow \\
3 x-7 \geq 3 \quad \text { OR } 3 x-7 \leq-3
\end{array}
\end{aligned}
$$

6\% sales tax
15200^{20} is the till to stand the day
$151100^{\circ} \cdot \cdot \cdot \cdot \cdot$ at end of the day
How much tax is owed the state?
Let $x=$ the ant of tax owed (t)
$y=$ the salas before tax (t)
4. $900=$ aust of 4 in.

Sales + Tax $=$ Sales + tax
$\frac{y+.06 y}{1.06 y=900}=900$
$y+.06 y$
$y=\frac{800}{1.06} \quad y(1+.06)$
Same idea for Knowing Discount price,
but don't know the original price.
Prise Before
Discount Discount $=\begin{aligned} & \text { Price after } \\ & \text { discount. }\end{aligned}$
I got a pain of shoes for $\$ 100$ that
were 20%. \rightarrow after a 20% discount.

Let $x=$ pice Before discount.
Then $x-.2 x=100$

$$
.8 x=100 \quad \text { asbleigh }
$$

$$
x=\frac{100}{.8}=125
$$

oops! forgot Sales Tax is 6%. So what
was the ortgual price?

$$
\$ 17 \frac{93}{} \text { is } 2066 \mathrm{y}^{\prime \prime} \text { guess }
$$

(1) Figure Prices after Discount B4 taxes

$$
\begin{aligned}
x+.06 x & =100 \\
1.06 x & =100 \\
x & =\frac{100}{1.06} \approx \frac{94.34}{6 \text { sale mice }}
\end{aligned}
$$

$$
\text { Price Before - Discount }=\text { Sale Price }
$$

$$
y-.2 y \approx 94.34
$$

$$
.8 y \approx 94.34
$$

$$
y \approx \frac{94.34}{.8} \approx 117.92
$$

Bobby got 177.93 , because he sounded to 84.34
before the $2^{\text {d }}$ pant.

94.347 .8 .9245283	
$106 / 1.66$.	117.925
Ans /84.33962264	
117.9245283	

\& 12,000 invested/ split into 2 accounts owe pays 10%, the other 7%
Th interest earned was $\$ 960$, how much was invested is each account?

Led $x=$ ant invested @ 10% ($\$$)

$$
\varepsilon_{1} y=\cdots \quad \cdots \quad \cdots \quad \neq \%
$$

the invested 12,000 total

$$
x+y=12000
$$

Interest was 960 .
This is called
Bart $-1 x+.07 y=960$
"Substitution" method"

$$
\begin{aligned}
& x+1 x+.07 y)=960 \text { Method } \\
& \begin{array}{l}
x+y=12000 \\
-x \quad y=-x
\end{array} \rightarrow .1 x+.07(12000-x)=960
\end{aligned}
$$

$$
\begin{aligned}
& |3 x-2|<7 \\
& -7<3 x-2<7 \\
& -5<3 x<9 \\
& -\frac{5}{3}<x<3
\end{aligned}
$$

Joseph

$$
|\circledast|<\Delta
$$

$(-)<\Delta A_{N D} \quad()>-\Delta$
\mid () $\mid>\Delta$
(i) $>\Delta$ OR
$(-)<-\Delta$
(1) $25 x^{2}-36=28$
(2) $16 x^{2}-34 x+15=0$
(3) $2\left(-\frac{29}{22}\right)-3 y=4$
(4) $.12 x+.10(15000-x)=1600$
(5) Solve $2 x+3=c x-7$ for x.
(6) Solve $h=v t+16 t^{2}$ for v

S2,3 See today's notes.
(7)

$$
\begin{aligned}
& -2+\frac{x}{3} \geq \frac{x}{2}-5 \\
& h=v t+16 t^{2} \\
& \quad 16 t^{2}+v t=h
\end{aligned}
$$

(8) $2 x-5 \leqslant-1$ of $-3 x-6<-15$
(9)

$$
\left|4-\frac{2}{7} x\right|+2=14
$$

(10) $\left|-\frac{1}{4} x+1\right|=\left|\frac{1}{2} x-\frac{1}{3}\right|$
$|27 x-19.7 \pi|>-1$ Always

$$
397,822,91237
$$

(11) $|-4 x+2|<6$
(12) $\left|3 x-\frac{3}{5}\right|<0.2$
(2.6)

EXPECT
Slle Scitentific
(13) $|5 x-7|<-6$ Notation guestions.
(14) $|3 x+7| \geq-5$

