2.3 \#41, 49,
2.4 \#11

41
$t=$ time, in hours

$$
\begin{gathered}
3175 \\
5(25 \\
5
\end{gathered}
$$

$$
\begin{aligned}
(15 t)^{2}+(20 t)^{2} & =75^{2} \quad \frac{5250}{5^{625}} \\
225 t^{2}+400 t^{2} & =5625 \\
625 t^{2} & =5625 \\
t^{2} & =\frac{5625}{625}=\frac{3 \cdot 5.5 \cdot 3 \cdot 5 \cdot 5}{5.5 \cdot 5.5}=9
\end{aligned}
$$

mi $\quad \begin{array}{ll}\sqrt{(-3)^{2}} & =\sqrt{9}=3 \\ \sqrt{3^{2}} & =\sqrt{9}=3\end{array} \quad t^{2}=9$

$$
\begin{aligned}
& t^{2}-9=0 \\
& (t-3)(t+3)=0
\end{aligned}
$$

$$
\sqrt{t^{2}}=\sqrt{9}
$$

$$
|t|=3
$$

$t-3=0$ OR $t+3=0$
$t=3$ or $t=-3$

$$
t= \pm 3
$$

Thiow out $t=-3$

$$
t \in\{ \pm 3\}
$$

Problan sez $t=+3$ is only one that makes sense.
${ }^{\text {htpp://www.mathtv.com/videos_by_textbookidid=4\# }}$ Vicleos!
Pg 92 for bumpin' smart phone, thingie Vicheos!
(49)
starts with \$250 Tax nate is 6% Ends with 51204
Brought in $\$ 954$ with tax (after tax)
$x=$ original ant $w / 0 \operatorname{tax}$

$$
\text { price }+\operatorname{tax}=\text { price }+\operatorname{tax}
$$

$x+.06 x=954$

\$12,000 invested, total
Let $x=$ ant invested @ 10% per year (()

$$
y=\cdots \quad \cdots \quad 7 \quad 7 \% \quad \cdots \quad(\$)
$$

Interest was $\$ 960$
$\$ 12,000$ invested, total

$$
\begin{aligned}
x+y & =12000 \\
-x \quad & =-x \\
\hline y & =12000-x
\end{aligned}
$$

(1) Interest was $\$ 960$

$$
\begin{aligned}
& |x|=\left\{\begin{array}{rll}
x & \text { if } & x \geq 0 \\
-x & \text { if } & x<0
\end{array}\right. \\
& |-3|=-(-3)=+3 \\
& \begin{aligned}
& y=3 x+2 \\
&|3 x+2|=\left\{\begin{array}{ll}
3 x+2 & \text { if } 3 x+2 \geq 0 \\
-(3 x+2) & \text { if } 3 x+2<0
\end{array}\right. \text { 位 }
\end{aligned} \\
& \text { R } \quad 3 x+2=0 \\
& 3 x=-2 \\
& x=-\frac{2}{3}
\end{aligned}
$$

$$
|x|=7 \text { means }
$$

$x=+7$ or $x=-7$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& x^{2}=49 \\
& \sqrt{x^{2}}=\sqrt{49} \\
& |x|=7< \\
& x=+7 \text { or } x=-7 \\
& x= \pm 7
\end{aligned}
$$

$$
\begin{aligned}
& 2 a \\
& \text { comes from } \quad x= \pm 7 \\
& \text { an absolute value like this one }
\end{aligned}
$$

$$
\begin{gathered}
|3 x-7|=-5 \quad \text { Nevah! } \\
3 x-7=-5 \text { or } 3 x-7=+5 \\
|3 x-7|=5 \\
3 x-7=5 \text { or } \quad \begin{array}{l}
3 x-7=-5 \\
3 x=12
\end{array} \quad 3 x=2 \\
\left\{x \left\lvert\, x=\frac{12}{3}=4\right. \text { or } \quad x=\frac{2}{3}\right\} \\
\begin{cases}x \in\left\{\frac{2}{3}, 4\right\}\end{cases}
\end{gathered}
$$

$$
\begin{array}{lc}
|3 x-7|<-5 & \text { Nerah! } \\
|3 x-7|>-5 & \text { Always }(-\infty, \infty) \\
& =\mathbb{R}
\end{array}
$$

$$
|3 x-7| \leq 5
$$

$$
3 x-7 \leq 5 \quad \text { AND } \quad 3 x-7 \geq-5
$$

$$
|3 x-7|<-5
$$

$$
\begin{array}{lll}
3 x-7<-5 & \text { and } & 3 x-7>5 \\
3 x<2 & 3 x>12 \\
\left\{x \int x<\frac{2}{3}\right. & \text { and } & x>4\}
\end{array}
$$

No crossoves/overlap ie., No intersection "and"

$$
\begin{aligned}
& |3 x-7|>5 \\
& 3 x-7>5 \quad O R \quad 3 x-7<-5 \\
& \left\{\begin{array}{ll}
3 x & >12 \\
x & =4
\end{array} \quad O R \quad \begin{array}{l}
3 x<2 \\
x<\frac{2}{3}
\end{array}\right\} \\
& \stackrel{\left.\left(-\infty, \frac{2}{3}\right)^{\frac{2}{3}} \cup \underset{4}{\rightleftarrows}\right)}{\longrightarrow} \\
& |A|<B \quad A_{N D} \\
& |A|>B \quad O R
\end{aligned}
$$

S 2.5 \#5 $1-65$
52.6 \#s $1-63$

Amswers in internal motition and set-builder motation

Set-build $\left\{x \left\lvert\, x>-\frac{2}{3}\right.\right.$ AND $\left.x<5\right\}$
$=\left(-\frac{2}{3}, 5\right)$ Interval
use \# hime if it helps.
$|A|<B \quad A_{N D}$
$A<B$ and $A>-B$
$|A|>B \quad O R$
$A>B$ OR $A<-B$

$$
|A|=B
$$

$A=B$ ore $A=-B$

$$
\begin{aligned}
& |3 x-7|+11=13 \\
& -11=-11 \\
& |3 x-7|=2 \\
& |a-4|=\frac{5}{3} \\
& \angle C D=3 \\
& a-4=\frac{5}{3} \quad \text { OR } \quad a-4=-\frac{5}{3} \\
& \frac{3 a-12}{3}=\frac{5}{3} \\
& |a-4|=\frac{5}{3} \quad L C D=3 \\
& 3 a-12=5 \\
& 3 a=17 \\
& a=\frac{17}{3} \\
& \text { str. } \\
& \frac{3|2-4|}{3}=\frac{5}{3} \\
& |3 a-12|=5 \\
& \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \quad a|b+c|=|a b+a c| \\
& \left|3 x^{-2}-7\right|=5 \quad \begin{array}{l}
\text { Nicole's } \\
\text { evil } \\
\text { question }
\end{array} \\
& \left\lvert\, \frac{3}{x^{2}-7 \mid}=5 \quad \begin{array}{l}
\text { Not for } \\
\text { worries, }
\end{array}\right. \\
& \left|\frac{3-7 x^{2}}{x^{2}}\right|=5 \quad \begin{array}{l}
3-7 x^{2} \\
\frac{3-7 x^{2}}{x^{2}}=5 \quad \text { or } \quad \frac{3-5}{x^{2}}=-5
\end{array}
\end{aligned}
$$

