S 1,4 questions

$$
(x+7)^{53}
$$

\#s $69,67,56,33$
(33) $8 x^{3}-27 y^{3}$

56
(67) $x^{6}-1$
which one is correct?
56) $9 x^{3}+18 x^{2}-4 x-8$
$\left(x^{3}\right)^{2}-1^{2}$

$$
\begin{aligned}
& =9 x^{2}[x+2]-4[x+2]=\left(x^{3}-1\right)\left(x^{3}+1\right) \\
& =\left(9 x^{2}-4\right)(x+2)=(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right) \\
& =\left(3^{2} x^{2}-2^{2}\right)(x+2) \\
& =\left((3 x)^{2}-2^{2}\right)(x+2)=\left(x^{2}\right)^{3}-1^{3} \\
& =(3 x-2)(3 x+2)(x+2)=\left(x^{2}-1\right)\left(\left(x^{2}\right)^{2}+x^{2}+1^{2}\right) \\
& =(x-1)(x+1)\left(x^{4}+x^{2}+1\right)
\end{aligned}
$$

"cyclotomic polynomial"
69

$$
\begin{aligned}
& 12 a^{2}(x-7)-75(x-7) \\
= & (x-7)\left[12 a^{2}-75\right] \\
= & 3(x-7)\left(4 a^{2}-25\right) \\
= & 3(x-7)(2 a-5)(2 a+5)
\end{aligned}
$$

Blue Boxes $\$ 1,5$
$P_{g} 45\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$

$$
\frac{a^{r}}{a^{s}}=a^{r-s}
$$

Pg $44 \quad a^{-r}=\frac{1}{a^{r}}$
Quotients vession of $(a b)^{r}=a^{r} b^{r}$

$$
a^{0}=1 \quad a^{\prime}=a
$$

\#s 1-32 Round to 2 places, if mecessary!? What's wrong with a fraction in lowest terms.
(2) $\frac{0+6}{0-3}=\frac{6}{-3}=-2$
(6) $\frac{4-y}{4-2}=\frac{0}{2}=0$
(8) $\frac{3+6}{3-3}=\frac{9}{0}$ which 7 .
(10) $\frac{-1-3}{3-(-3)}=\frac{-4}{3+3}=-\frac{4}{6}=-\frac{2}{3}$
(18) $\frac{3(-4)+5(-6)}{10-6}=\frac{-12-30}{4}=\frac{-42}{4}=-\frac{21}{2}$
(22) $\frac{(6-2)^{2}}{6^{2}-2^{2}}=\frac{4^{2}}{36-4}=\frac{16}{32}=\frac{1}{2}$
(38) $\frac{1}{2}\left(\frac{1.3}{1.1}-1\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{13}{11}-1\right)=\frac{1}{2}\left(\frac{13}{11}-\frac{11}{11}\right)=\frac{1}{2}\left(\frac{2}{11}\right)=\frac{1}{11} \\
& \text { porifeck }
\end{aligned}
$$

ANYTHIN 6 before $\left(\frac{1.3}{1.1}\right)\left(\frac{10}{10}\right)=\frac{13}{11}$
the last step.

$$
\begin{array}{ll}
\frac{1}{11 \approx .09} & 10(2.4)(2.8) \\
\frac{1}{11}=\frac{109}{} & =10(2.4) 10(2.8) \\
\frac{(2.4)(2.8)}{1.2}=\frac{(24)(2.8)}{12}=5.6
\end{array}
$$

How to do it all $w /$ 'fractions?

$$
\left.\begin{array}{c}
\frac{(2)(2.8)}{1} \cdot \frac{10}{10}=\frac{(5.6)(10)}{10}=\frac{56}{10}=\frac{28}{5} \\
10(1.1 .1) \\
10=10.10 .10
\end{array}\right\} \begin{aligned}
& \text { Huh-uh, } \\
& \text { Baby. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{25}{100}\right)\left(\frac{25}{100}\right)}{\left(\frac{6}{10000}\right)(400)(400)} \\
& \frac{625}{(.25)^{2}} \\
& \frac{625}{10000} \\
& =\left(\frac{65}{10000}\right)(406)\left(\frac{10000}{625}\right) \\
& \frac{255^{2}}{\frac{125}{41}}=\left(5^{2}\right)^{2}=5^{4}
\end{aligned}
$$

Simplify:

$$
\frac{9}{16}+\left(-\frac{5}{12}\right)=\frac{9}{16}-\frac{5}{12}
$$

$$
\angle C M=L C D=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3
$$

$$
\begin{aligned}
& =\frac{9}{2 \cdot 2 \cdot 2 \cdot 2} \cdot \frac{3}{3}-\frac{5}{2 \cdot 2 \cdot 3} \cdot \frac{2 \cdot 2}{2 \cdot 2} \\
& =\frac{27-20}{2^{4} \cdot 3}=\frac{7}{2 \cdot 3}=\frac{7}{48} \\
&
\end{aligned}
$$

Separate question

$$
\frac{9}{16} \div\left(-\frac{5}{12}\right)=\left(\frac{9}{46}\right)\left(-\frac{36}{5}\right)=-\frac{27}{20}
$$

$\begin{array}{ccc}\text { Sum difference prochet. } \\ a+b & a-b & a b\end{array}$
quotient.

$$
\frac{2}{b}
$$

\#s 3q-46 unite with positive exponents.
40

$$
(-5)^{-2}=\frac{1}{(-5)^{2}}=+\frac{1}{0^{25}}
$$

2 is enem
$(-5)^{-3}=\frac{1}{(-5)^{3}}=-\frac{1}{125}$
2 unougs
make a Nignt
$\begin{aligned}(-5)^{2} & =((-1)(5))^{2} \\ & =(-1)^{2}(5)^{2}=5^{2}\end{aligned}$

$$
=(-1)^{2}(5)^{2}=5^{2}
$$

3 is odd 3wrougs are

$$
\begin{aligned}
& =(-5)(-5) \\
& =(-1)(5)(-1)(5) \\
& =25
\end{aligned}
$$

(46) $\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-3}=2^{2}+3^{+3}=\begin{gathered}4+27 \\ \text { Crobbage }\end{gathered}$
simplify. Füal answers with positive exponents.
Assume variables are all nonzero
(so putting them in denominator is legal.)
(54) $\frac{x^{-3}}{x^{5}}=x^{-3-5}=x^{-8}=\frac{1}{x^{8}}$

OR, like Adam Says:

$$
\frac{x^{-3}}{x^{5}}=\frac{1}{x^{5} x^{3}}=\frac{1}{x^{5+3}}=\frac{1}{x^{8}}
$$

(64) $\frac{\left(x^{-4}\right)^{3}\left(x^{3}\right)^{-4}}{x^{10}}=\frac{x^{(-4)(3)} x^{(3)(-4)}}{x^{10}}$

$$
\begin{aligned}
= & \frac{x^{-12} x^{-12}}{x^{10}}=x^{-12-12-10}=x^{-34}=\frac{1}{x^{34}} \\
& \frac{1}{x^{10} x^{12} x^{12}}=\frac{1}{x^{10+12+12}}=\frac{1}{x^{34}}
\end{aligned}
$$

(72) $\left(\frac{x^{-8} y^{-3}}{x^{-5} y^{6}}\right)^{-1}$
$\stackrel{(2)}{=} \frac{x^{8} y^{3}}{x^{5} y^{-6}}=x^{8-5} y^{3-(-6)}=x^{3} y^{9}$
(b)

$$
=\frac{x^{-5} y^{6}}{x^{-8} y^{-3}}=x^{-5-(-8)} y^{6-(-3)}=x^{-5+8} y^{6+3}
$$

(c) $\frac{x^{-5} y^{6}}{x^{-8} y^{-3}}=\frac{x^{8} y^{6} y^{3}}{x^{5}}=x^{8-5} y^{6+3}=x^{3} y^{9}$

$$
\begin{aligned}
& \text { (74) } \frac{(2 x+3)-(2 a+3)}{x-a} \\
& =\frac{2 x+3-2 a-3}{x-a}=\frac{2 x-2 a}{x-a}=\frac{2(x-a)}{x-a}=2
\end{aligned}
$$

S 1.5 \#s $1-33,37,39-77$

