Shared work
I can do it in 7 hrs.
She cando it in 10 hrs .
How long working loge then?
I do $\frac{1}{7} \frac{j 0 b}{h r}$. That's my rate
Let $x=$ the ant of time I spend working on the job with "her," in hours. Then

$$
\begin{aligned}
& \frac{1}{7} x=\left(\frac{1}{7} \frac{j o b}{b /}\right)(x \text { mrs }) \\
& \frac{1}{7} x+\frac{1}{10} x=1 \operatorname{job}_{70}
\end{aligned}
$$

Jobs

$$
\begin{aligned}
\frac{x}{7} \cdot \frac{10}{10}+\frac{x}{10} \cdot \frac{7}{7} & =\frac{1}{1} \cdot \frac{70}{70} \quad \text { Joss } \\
\frac{10 x+7 x}{L C D} & =\frac{70}{100} \\
17 x & =70 \\
x & =\frac{70}{17}=4 \frac{2}{17} \text { hrs }
\end{aligned}
$$

Suppose I show up 2 hours late.
Let $x=$ how long I spend on the job.(hrs)
How long did each of us work?

$$
\begin{aligned}
& \frac{1}{7} x+\frac{1}{10}(x+2)=1 \\
& \frac{1}{7}(x-2)+\frac{1}{10} x=1 \text {, if } x=\text { time SHE } \text { spent. (hrs) }
\end{aligned}
$$

$\$ 5.6 \# 55,9$,

$$
\frac{2}{3} \quad \frac{3}{2}
$$

$$
\begin{aligned}
& x, x+1 \\
& \frac{1}{x}+\frac{1}{x+1}=\frac{7}{12} \quad \frac{1}{\left(\frac{2}{3}\right)}=1 \cdot \frac{3}{2}=\frac{3}{2}
\end{aligned}
$$

Speed in still $\mathrm{H}_{2} \mathrm{O}$ is $5 \frac{\mathrm{mi}}{\mathrm{hr}}$
3 miles down in same time it takes to go 1.5 miles up. How fast is the

$$
\frac{1.5}{5-c}=\frac{3}{5+c}
$$

$$
\begin{aligned}
& \text { cement? } \\
& \begin{array}{l}
\text { "anent? } \\
D=r t ?
\end{array} \\
& D=r t \Rightarrow t=\frac{D}{r} \\
& \text { up } \quad 1.5 \quad \begin{array}{ll}
r-c
\end{array} \\
& \text { Down } 3 \quad 5+c \quad t=\frac{3}{5+C}
\end{aligned}
$$

$$
\begin{aligned}
& 8^{\prime} a 17 b \sqrt[3]{16 a^{4} b^{8} r^{77}}=\sqrt[3]{2^{3+1} a^{3+1} b^{6+2} r^{75+2}} \\
& =\sqrt[3]{2^{3} \cdot 2^{1} a^{3} \cdot \frac{a^{1} b^{6} \cdot b^{2} r^{75} r^{2}}{3}} \begin{array}{l}
\frac{25 r 2}{77} \\
=2^{\frac{3}{3}} a^{\frac{3}{3}} b^{\frac{6}{3}} r^{\frac{75}{3}} \sqrt[3]{2 a b^{2} r^{2}} \frac{60}{17} \\
=2 a b^{2} r^{25} \sqrt[3]{2 a b^{2} r^{2}}
\end{array}
\end{aligned}
$$

$56.3 \quad 7 \sqrt{2}-5 \sqrt{2}=2 \sqrt{2}$

$$
\begin{aligned}
& \sqrt{48}-3 \sqrt{27}+2 \sqrt{75} \\
& 4 \sqrt{3}-3 \cdot 3 \sqrt{3}+2 \cdot 5 \sqrt{3} \\
& 4 \sqrt{3}-9 \sqrt{3}+10 \sqrt{3} \\
& =(4-9+10)(\sqrt{3}) \\
& =5 \sqrt{3}
\end{aligned}
$$

(34)

$$
\begin{aligned}
& \frac{\sqrt{12}}{6}+\sqrt{\frac{1}{3}}+\frac{\sqrt{3}}{3} \\
= & \frac{2 \sqrt{3}}{6}+\frac{\sqrt{1}}{\sqrt{3}}+\frac{\sqrt{3}}{3} \\
= & \frac{\sqrt{3}}{3}+\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{3}}{3} \\
= & \frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{3} \\
= & \frac{\sqrt{3}+\sqrt{3}+\sqrt{3}}{3} \\
= & \frac{3 \sqrt{3}}{3}=\sqrt{3} .
\end{aligned}
$$

$$
\sqrt{3} \sqrt{3}=\sqrt{3 \cdot 3}=3
$$

Rationalize the denominator.

$$
3 \longdiv { 1 . 7 3 2 }
$$

$$
\begin{aligned}
& \$ 6.5 \\
& \sqrt{3 x+1}=4 \\
& \sqrt{\text { Inside }} \sqrt{(3 x+1)^{2}}=|3 x+1| \\
& \text { It's usda- }(\sqrt{3 x+1})^{2}=4^{2} \\
& \begin{array}{l}
\text { trod that } \\
3 x+1 \geq 0
\end{array} \quad 3 x+1=16 \\
& 3 x=15 \\
& \text { Let } x=-50 \\
& \text { Then } \sqrt{(3 x+1)^{2}}=\sqrt{(-150+1)^{2}} \\
& =\sqrt{(-149)^{2}}=149=|3 x+1| \\
& (-149)(-149)=149^{2}=
\end{aligned}
$$

$$
\begin{array}{rlrl}
\sqrt{3 x+1}-4=1 & \sqrt{3 x+1}+4=1 \\
\sqrt{3 x+1} & =5 & \sqrt{3 x+1}=-3 \\
(\sqrt{3 x+1})^{2} & =5^{2} & \text { Nevah. } \\
3 x+1 & =25 & & \\
3 x & =24 & (\sqrt{3 x+1})^{2}=(-3)^{2} \\
x & =8 &
\end{array}
$$

Squaniong Twice!

$$
\begin{gathered}
\sqrt{x+3}=\sqrt{x}-3 \\
(\sqrt{x+3})^{2}=(\sqrt{x}-3)^{2} \\
x+3=x-6 \sqrt{x}+9 \\
6 \sqrt{x}=6 \\
\sqrt{x}=1 \\
(\sqrt{x})^{2}=1^{2} \\
x=1
\end{gathered}
$$

$$
\begin{aligned}
& (\sqrt{x})^{2}-2(3 \sqrt{x})+3^{2} \\
& x-6 \sqrt{x}+9 \\
& (\sqrt{x}-3)(\sqrt{x}-3) \\
& =x-3 \sqrt{x}-3 \sqrt{x}+9 \\
& =x-6 \sqrt{x}+9 \\
& \sqrt{x} \sqrt{x}=(\sqrt{x})^{2}=x
\end{aligned}
$$

SG. 6

$$
\begin{aligned}
& \sqrt{-36}=\sqrt{(-1)(36)}=\sqrt{-1} \sqrt{36} \\
& \text { ISWYDT } \\
& i^{30}=i^{2.15}=\left(i^{2}\right)^{15} \\
& \text { TWaS } \\
& \text { LMFAO } \\
& =(-1)^{15}=-1 \\
& i^{2}=-1 \\
& i^{32}=1 \\
& \sqrt{-1}=i \\
& \text { ADDITION } \\
& (5+2 i)-(3+6 i) \\
& =5+2 i-3-6 i \\
& =2-4 i \\
& \text { Always white } \\
& \text { complex }{ }^{5} \text { in } \\
& \text { the form } a+b i
\end{aligned}
$$

MULTIPLICATION

$$
\begin{aligned}
3 i(2-7 i) & & (7-6 i)(2+3 i) \\
6 i-21 i^{2} & = & 14+21 i-12 i-18 i^{2} \\
= & 6 i+21 & =14+9 i+18 \\
= & 21+6 i= & 32+9 i
\end{aligned}
$$

Division

$$
\frac{7-6 i}{2+3 i}
$$

$$
\begin{aligned}
& (a+b)(a-b)=a^{2}-b^{2} \\
& (a+b)(a+b)=a^{2}+2 a b+b^{2} \\
& (a-b)(a-b)=a^{2}-2 a b+b^{2}
\end{aligned}
$$

$$
x^{2}-9=(x+3)(x-3)
$$

$$
\begin{aligned}
& =\left(\frac{7-6 i}{2+3 i}\right)\left(\frac{2-3 i}{2-3 i}\right) \quad \frac{14-33 i+18 i^{2}}{2^{2}-(3 i)^{2}} \\
& =\frac{14-21 i-12 i+18 i^{2}}{2^{2}-6 i+6 i-9 i^{2}} \frac{\frac{18}{109}}{}=\frac{14-33 i-18}{4-9 i^{2}} \\
& \left(\frac{7+9 i}{13+2 i}\right)\left(\frac{-4-33 i}{4+9}\right. \\
& \left.=\frac{13-2 i-13 i}{13-2 i}\right) \\
& =\frac{-4-33 i}{13} \\
& =\frac{109+103 i}{173}=\frac{109}{173}+\frac{103}{173} i=\frac{-\frac{4}{13}-\frac{33}{13} i}{a+b i}
\end{aligned}
$$

$$
\begin{array}{rlrl}
x^{2}-6 x-40 & =0 & & (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& =40 & & \text { Redace b by } \frac{b}{2}: \\
x^{2}-6 x & & \left(a-\frac{b}{2}\right)^{2}=a^{2}-a b+\left(\frac{b}{2}\right)^{2} \\
x^{2}-6 x+3^{2} & =40+9 & & \text { Completing the } \\
(x-3)^{2} & =49 & & \text { Square. } \\
\sqrt{(x-3)^{2}} & =\sqrt{49} & & \\
|x-3| & =7 & & \\
x-3 & = \pm 7 & & \\
x & =3 \pm 7 & &
\end{array}
$$

$$
\begin{aligned}
x^{2}+6 x+40 & =0 \quad a^{2}-2 a b+b^{2} \\
x^{2}+6 x+3^{2} & =-40+9 \\
(x+3)^{2} & =-31 \\
(x+3)^{2} & =x^{2}+6 x+b^{2} \\
(x-7)^{2} & =x^{2}-14 x+7^{2} \\
x & =y \\
x+3 & =y+3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rewnituig } a x^{2}+b x+c \\
& =(x+3)^{2}-16 \\
& =x^{2}+6 x+3^{2}-9-7 \\
& \text { in form } a(x-h)^{2}+k
\end{aligned}
$$

S6.3 \#5 1,3,5,11,27,29,31
$S^{\prime} 6,5 \# 51,3,5,9,11,19,31,37,39$
$S^{\prime} 6.6$ \#S $1,3,25,27,41,45,47,59,67$ plus more" (Coming next time)
$\delta^{\prime} 7.1$ I \#5 35,37, 45,49
S'7.1 II Re-wnite each of the following in the form $y=a(x-h)^{2}+K$. Them graph. HINT: You work from 7.1 I will give x-intercepts
(1) $x^{2}+4 x-12$
$(a+b)^{2}$
(2) $x^{2}+12 x+27$
(3) $x^{2}-5 x-2$
(4) $4 x^{2}-3 x+5$

