\qquad

Do not assume that variables represent positive real numbers, but do assume that every expression represents a real number. So if you see a $\sqrt{x^{\text {odd power }}}$, you assume $x \geq 0$. If you see a $\sqrt{x^{\text {evenpower }}}$, you can not assume that $x \geq 0$. The next level of understanding is that $\left|x^{\text {even power }}\right|=|x|^{\text {even power }}=x^{\text {even power }}$, but even though $\left|x^{\text {odd power }}\right|=|x|^{\text {odd power }}$ is true, you can't get rid of the absolute value that easily.

1. 7.1 Simplify each radical expression. Rationalize denominators in final step (This is technically a 7.5 skill...).
a. $\sqrt{81 x^{2} y^{6} z^{8}}$
b. $\sqrt{\frac{27 x^{3}}{25 y}}$
2. 7.1 Identify the domain and graph $f(x)=\sqrt{x+2}-3$
3. 7.2 Simplify the expression.
a. $\frac{\left(x^{-2} y^{3}\right)^{1 / 8}}{\left(x^{-3} y\right)^{-1 / 4}}$
b. $\left(\frac{x^{-2} y^{3}}{x^{-3} y}\right)^{1 / 8}$
4. 7.2 Multiply $\left(3 x^{1 / 2}-2\right)\left(3 x^{1 / 2}+2\right)$
5. 7.2 Use rational exponents to write the product $\sqrt[5]{x} \sqrt[3]{5 y}$ as a single rational expression. This is like \#2 85 - 98 in 7.2, but they gave imprecise instructions.
6. 7.3 Simplify. Assume all expressions represent real numbers. (Variables may or may not be nonnegative.)
a. $\sqrt{8 x^{2} y^{3}}$
b. $\frac{\sqrt[5]{64 x^{10} y^{3}}}{\sqrt[5]{2 x^{3} y^{-7}}}$
7. 7.3 Find the distance between the two points (3,2), ($-2,-3$). Leave your result in simplified radical form.
8. 7.4 Under the conventions we are following, 7.4 \#s 39 and 40 are a lot harder than they look. Ask me about 'em. In the meantime, add $\frac{\sqrt[3]{x^{5}}}{8}+\frac{5 x \sqrt[3]{x^{2}}}{4}$
9. 7.4 Multiply and simplify $(5 \sqrt{7 x}-\sqrt{2 x})(4 \sqrt{7 x}+6 \sqrt{2 x})$
10. 7.5 Rationalize...
a. ... the denominator of $\frac{2}{1-\sqrt{3}}$
b. ... the numerator of $\frac{2+\sqrt{7}}{5-\sqrt{3}}$
11. 7.6 Solve the radical equations
a. $\sqrt{7 x-5}=\sqrt{4 x+3}$
b. $x-\sqrt{x-2}=4$
c. $\sqrt{x+1}-\sqrt{x-1}=2$
12. The following equations are quadratic in form. Solve them.
a. $x-2 \sqrt{x}-8=0$
b. $x^{4}-2 x^{2}-8=0$
c. $x^{-2}-2 x^{-1}-8=0$
