\qquad

1. 7.1 Simplify $-\sqrt{9}$
2. 7.1 Use a calculator to approximate $\sqrt{11}$ to 3 decimal places. Check your answer by squaring.
3. 7.1 Find the cube root: $\sqrt[3]{\frac{27}{64}}$
4. 7.1 Find the $4^{\text {th }}$ root: $\sqrt[4]{81 x^{4}}$
5. 7.7 Write in terms of $i: 4 \sqrt{-20}$
6. 7.7 Multiply. Simplify as much as possible. $\sqrt{-2} \cdot \sqrt{-6}$
7. 8.1 Solve each equation. Your book says use the square root property, but I want you to show a step involving an absolute value, until your heart knows where that \pm comes from!
a. $x^{2}-11=0$
b. $(y-3)^{2}=4$
c. $x^{2}+4=0$
d. $(y+2)^{2}=-25$

Added Problems not in your book:
8. Solve the equations by the square root principle. Simplify your answer as much as possible without using a calculator. I'm not looking for decimal answers - just simplified radicals, as needed.
a. $(x+5)^{2}=72$
b. $(2 x-3)^{2}=-150$
9. Simplify the expressions:
a. $\frac{2-\sqrt{48}}{4}$
b. $\frac{4-\sqrt{48}}{2}$
c. $\frac{4-\sqrt{-48}}{2}$

