On the elimination problems, I just want you to eliminate the x in the 2^{nd} equation. In the 3x3 cases (See #s 7 – 9), after you've eliminated x in the 2^{nd} and 3^{rd} equations, I want you to eliminate y in the 3^{rd} equation. Do work on separate paper. Then show steps on this sheet.

1. **4.1** Solve the system of equations by the substitution method: 4x - 2y = 6

$$-9 = -6x - 5$$

$$y = 6x + 5$$

$$4x - 2(6x + 5) = 6$$

$$4x - 12x - 10 = 6$$

$$-8x = 16 \implies x = -2$$

y = 6x + 5 y = 6(-2) + 5= -12 + 5

(x,y)=(-2,-7)=-7(xy) = 5 (-2,-7) }

2. **4.1** Solve the system of equations by the elimination method: 2x + 5y = -1

$$-2RI - 6x - 8y = -4$$

$$3R2 6x + 15y = -3$$

$$-2RI + 3R2 7y = -7$$

$$y = -1$$

3x+4y=23x+4(-1)=2 (x,y)=(2,-1) on (x,y)=}(2,-1){

3. 4.1 Re-write the systems without fractions or decimals. Do not solve the systems:

a.
$$\left(\frac{1}{2}x - \frac{1}{3}y = -3\right)$$
 6 6 3 $\times -2y = -18$ 2. $3x + 7.2y = 11.8$ $-1.2x + 2.7y = 13$ 2 $3x + 7.2y = 13$ 2 $3x + 7.2y = 13$ 2 $3x + 7.2y = 13$

$$\begin{vmatrix}
23x + 72y = 118 \\
-12x + 27y = 130
\end{vmatrix}$$

4. 4.2 Cashews are worth \$2.00 per pound. Peanuts cost \$1.50 per pound. How many pounds of each should be mixed together to obtain 50 pounds of a mixture worth \$1.80 per pound.

Then
$$x + y = 50$$
 Total WT
and $2x + 1.5y = (1.80)(50)$ Total Cost

$$y = 50 - X$$
:
 $2x + 1.5(50 - X) = 90$
 $2x + 75 - 1.5x = 90$

$$= 50 - X$$

$$2x + 1.5(50 - X) = 90$$

$$2x + 75 - 1.5x = 90$$

$$x = \frac{15}{5} = \frac{30}{30} = X$$

$$y = 20$$

5. 4.3 How much 37% and 42% alcohol solution should be used to make 100 milliliters of 40% alcohol?

Then
$$x + y = 100$$

and $37x + .42y = .4(100)$

Then
$$x + y = 100$$
 $.37x + .42(100 - x) = 40$
and $.37x + .42y = .4(100)$ $37x + 42(100 - x) = 4000$
 $37x + 4200 - 42x = 4000$
 $-5x + 4200 = 4000$

6. 4.3 Set up the word problem. Do not solve.

 $x = \frac{200}{-5} = 40$ y = 60

Carlotta has \$10,000 to invest. I recommend that the invest in Treasury bills that yield 6%, Treasury bonds the yield 7%, and corporate bonds that yield 8%. Carlotta wants to have an annual income of \$680 and the amount invested in corporate bonds must be half that invested in Treasury bills. What is the amount of each investment?

Let x = Amt invested in T-Bills (\$), y= 11 1, T-Bonds 11, and 4 C-Bonds 2= 1, 1,

Then
$$x + y + 2 = 10000$$
, $06x + .07y + .082 = 680$, and $z = \frac{1}{2}x$

- **4.2** Solve the following systems of linear equations, if possible. If not possible, state why. One of them will have infinitely many solutions. One will have no solutions. The format I want you to use is as follows:
 - a. Separate sheet of paper for each problem.
 - b. Write on only one side of each page. If you need more than one side, you're doing it wrong, but use an entire sheet for each problem.
 - c. Paper without lines on it is required.
 - d. Do all your work on separate paper. When you've arrived at a solution, write it up, showing steps, very neatly on the paper you will turn in.

2193

$$4x - y + 3z = 10$$

$$x + y - z = 5$$

$$8x - 2y + 6z = 10$$

$$x - y + 2z = 3$$

8.
$$4x + y - z = 8$$

$$3x - y + z = 6$$

$$x - 2y - 4z = -19$$

9.
$$2x - 3y - 7z = -27$$

$$-3x + 4y + 10z = 35$$

$$\begin{bmatrix} 1 & -1 & 2 & | & 3 & | & 4 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & 1 & | & & 1 & | &$$